## **Supporting information**

## Defects lead to a massive enhancement in UV-Vis-IR driven thermocatalytic activity of Co<sub>3</sub>O<sub>4</sub>

## mesoporous nanorods

Lan Lan, Zhengkang Shi, Qian Zhang, Yuanzhi Li,\* Yi Yang, Shaowen Wu, Xiujian Zhao

State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122

Luoshi Road, Wuhan 430070, P. R. China. Email: liyuanzhi66@hotmail.com



Scheme S1. The Set-up of isotope labeling experiment for the oxidation of benzene  $({}^{12}C_{6}{}^{1}H_{6})$  by  ${}^{18}O_{2}$  on the Co<sub>3</sub>O<sub>4</sub>-MNR sample under the illumination from the Xe lamp.



Scheme S2. The set-up for heating the used  $Co_3O_4$ -MNR sample (after the <sup>18</sup>O<sub>2</sub> isotope experiment) in an atmosphere of <sup>12</sup>C<sup>16</sup>O and N<sub>2</sub> at a known heating rate.



Figure S1. N<sub>2</sub> adsorption–desorption isotherm (A) and pore size distribution (B) of Co<sub>3</sub>O<sub>4</sub>-MNR.



Figure S2. The XPS spectra of Co2p of the samples.



**Figure S3.** The EPR spectra of  $Co_3O_4$ -MNR,  $Co_3O_4$ -Aladdin, and the used  $Co_3O_4$ -MNR sample after the photothermocatalytic durability tests (A). The EPR spectra (enlarged from Figure S3A) of  $Co_3O_4$ -MNR and the used  $Co_3O_4$ -MNR sample after the photothermocatalytic durability tests (B): The values of *g* for  $Co_3O_4$ -Aladdin,  $Co_3O_4$ -MNR, and the used  $Co_3O_4$ -MNR sample after the photothermocatalytic durability tests are 2.185, 2.033, and 2.033 respectively.



Figure S4. XRD patterns of the Co<sub>3</sub>O<sub>4</sub>-Aladdin sample.



Figure S5. TEM (A) and HRTEM (B) images of the commercial Co<sub>3</sub>O<sub>4</sub>-Aladdin sample.



**Figure S6.** The XRD patterns (A), TEM (B), and HRTEM (C) of the used  $Co_3O_4$ -MNR sample after the photothermocatalytic durability tests.



**Figure S7.** The time evolution of benzene concentration (A) and the initial  $CO_2$  production rate of  $Co_3O_4$ -MNR for benzene oxidation of under the UV-Vis-IR illumination with different light intensity.



**Figure S8.** FTIR spectra of pure gases of  ${}^{12}C^{16}O_2$ ,  ${}^{12}C^{18}O_2$ , and  ${}^{12}C^{16}O^{18}O$  prepared by the oxidation of  ${}^{12}C^{16}O$  by  ${}^{18}O_2$  on 1.0 wt% Pt/Al<sub>2</sub>O<sub>3</sub>.



**Figure S9.** The evolution of FTIR spectra of the reactants and products for the used  $Co_3O_4$ -MNR sample (after the oxidation of benzene by <sup>18</sup>O<sub>2</sub> on the fresh  $Co_3O_4$ -MNR sample under the UV-Vis-IR illumination for 70 min) in an atmosphere of <sup>12</sup>C<sup>16</sup>O and N<sub>2</sub> at elevated temperatures. As shown in Figure S9, when the temperature increases to 150 °C, the strong double peaks of <sup>12</sup>C<sup>16</sup>O<sup>18</sup>O at 2343 and 2322 cm<sup>-1</sup> are observed. This observation indicates that a considerable amount of <sup>18</sup>O exist in the used  $Co_3O_4$ -MNR sample and participate in the oxidation of <sup>12</sup>C<sup>16</sup>O. The strong peak of <sup>12</sup>C<sup>16</sup>O<sub>2</sub> at 2360 cm<sup>-1</sup> (*note:* the peak at 2341 cm<sup>-1</sup> of <sup>12</sup>C<sup>16</sup>O<sub>2</sub> overlaps with the peak at 2343 cm<sup>-1</sup> of <sup>12</sup>C<sup>16</sup>O<sup>18</sup>O) is observed. This observation indicate that a considerable amount of <sup>16</sup>O also exist in the used  $Co_3O_4$ -MNR sample and participate in the oxidation of <sup>16</sup>O also exist in the used  $Co_3O_4$ -MNR sample and participate amount of <sup>16</sup>O also exist in the used  $Co_3O_4$ -MNR sample and participate in the oxidation of <sup>12</sup>C<sup>16</sup>O. When the temperature increases to 225 and 300 °C, the peaks of both <sup>12</sup>C<sup>16</sup>O<sup>18</sup>O and <sup>12</sup>C<sup>16</sup>O<sub>2</sub> are significantly intensified, suggesting that more lattice oxygens of <sup>16</sup>O and <sup>18</sup>O in the used  $Co_3O_4$ -MNR sample participate in the oxidation of <sup>12</sup>C<sup>16</sup>O<sup>18</sup>O at 2322 cm<sup>-1</sup> almost remains unchanged, while the peak of <sup>12</sup>C<sup>16</sup>O<sub>2</sub> at 2360 cm<sup>-1</sup> is obviously intensified. This observation indicates that the lattice <sup>18</sup>O in the used  $Co_3O_4$ -MNR sample is completely exhausted, and the bulk lattice <sup>16</sup>O in the used  $Co_3O_4$ -MNR sample is completely exhausted, and the bulk lattice <sup>16</sup>O in the used  $Co_3O_4$ -MNR sample is to the surface and participates in the oxidation of <sup>12</sup>C<sup>16</sup>O.



**Figure S10.**  $O_2$ -temperature programmed oxidation of the  $Co_3O_4$ -MNR sample pre-reduced by CO at 250 °C.