Supporting Information:

Metal-OrganicFramework-Derived $Zn_{0.975}Co_{0.025}S/CoS_2$ EmbeddedinN,S-codopedCarbonnanotube/nanopolyhedraasEfficientElectrocatalystforOverall Water Splitting

Zhou Yu,^{a, b} Yu Bai,^{*b, c} Shimin Zhang,^a Yuxuan Liu,^a Naiqing Zhang,^{b, d} and Kening Sun,^{*b, d}

^{a.} School of Chemistry and Chemical Engineering, Harbin Institute of Technology,

Harbin, 150090, P. R. China

^b Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of

Technology, Harbin, 150090, P. R. China

^c Advanced Research Institute for Multidisciplinary Science, Beijing Institute of

Technology, Beijing, 100081, P. R. China

^d State Key laboratory of Urban Water Resource and Environment, Harbin Institute of

Technology, Harbin, 150090, P. R. China

*E-mail: <u>yubaiit@163.com</u> (Y Bai)

*E-mail: <u>keningsunhit@126.com</u> (KN Sun)

1 EXPERIMENTAL

1.1 Synthesis of ZnCo-ZIFs and ZIF-67

All the chemicals were directly used after purchase without further purification. In a typical preparation, 4 mmol $Co(NO_3)_2 \cdot 6H_2O$ and 2 mmol $Zn(NO_3)_2 \cdot 6H_2O$ were dissolved into 40 mL of methanol (MeOH) and solution was then added into 30 mL of MeOH containing 24 mmol 2-methylimidazole (MeIM) under string. The mixed solution was placed at 25 °C for 24 h. The as-obtained powders were centrifuged with ethanol and dried in vacuum overnight to obtain the ZnCo-ZIFs. The preparation of ZIF-67 was performed with a similar process to ZnCo-ZIFs in the absence of $Zn(NO_3)_2 \cdot 6H_2O$.

1.2 Synthesis of Co₃ZnC/Co-NCNT/NP, Co-NCNT/NP and Co₃ZnC/Co-NCNP

The as-prepared ZnCo-ZIFs precursors were placed in a ceramic boat, and then heated in a tube furnace at a ramp rate of 5 °C/min to 600 °C under Ar/H₂ flow (95%/5% in volume ratio) for 1 h. After cooling naturally, the black product of Co₃ZnC/Co-NCNT/NP was finally collected. The Co-NCNT/NP was obtained by treating ZIF-67 in the similar chemical vapor reduction and deposition process. The same procedure was conducted to convert ZnCo-ZIFs to Co₃ZnC/Co-NCNP by calcination under Ar₂ atmosphere.

1.3 Synthesis of ZnCoS-NSCNT/NP, CoS₂-NSCNT/NP and ZnCoS-NSNP

The resulting Co₃ZnC/Co-NCNT/NP (0.1 g) was put in a tube furnace, and 0.6 g S powder was placed at the upstream side. Then, the temperature of the furnace was elevated to 600 °C at a rate of 2 °C min⁻¹ and maintained for 2 h in a tube furnace

under a N₂ flow. After the furnace was cooled to room temperature, the ZnCoS-NSCNT/NP was obtained. The CoS₂-NSCNT/NP and ZnCoS-NSNP products were obtained using similar preparation process with Co-NCNT/NP and Co₃ZnC/Co-NCNP as the precursor, respectively

1.4 Characterization

Field emission scanning electron microscopy (FESEM) images were obtained on a Hitachi S-8010 scanning electron microscope. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and energy-dispersive X-ray (EDX) elemental mapping images were all recorded on a FEI Tecnai G2 F30 (200 kV) high-resolution transmission electron microscope. X-ray diffraction (XRD) characterization was carried out on a PANalytical X'Pert PRO with Cu Ka radiation. X-ray photoelectron spectra (XPS) were obtained with a K-Alpha electron spectrometer (Thermofish Scientific Company) using Al K α (1486.6 eV) radiation. The surface area was measured by the Brunauer-Emmett-Teller (BET) method using ASAP2020.

1.5 Electrochemical test

Electrocatalytic activity evaluations were performed in a O₂-purged within the solution of 1 M KOH with a three-electrode system. The glassy carbon (GC) electrode (3 mm diameter) was utilized as the working electrode. The saturated Ag/AgCl electrode (SCE) was used as the reference electrode, and Pt mesh or a graphite electrode was used as the counter electrode. 2 mg sample was dispersed in 500 μ L Nafion (5 wt%) -water-isopropyl alcohol mixture solution with a volume ratio of 0.05 : 4 : 1 by sonicating. Then, 6 μ L of the dispersion was deposited onto a GC and dried in

air overnight (loading ~0.21 mg cm⁻²). The linear sweep voltammetry (LSV) was measured at 5 mV s⁻¹ scanning rate. All the applied potentials were referenced to a reversible hydrogen electrode (RHE) scale. The long-term durability test was performed using chronoamperometry measurements. Cyclic voltammograms (CVs) were measured from 0.20 to 0.30 V *vs*. Ag/AgCl at scanning rates of 5, 10, 20, 40, 60, 80 and 100 mV s⁻¹. The overall water splitting performance was measured by Ni (1×1 cm) foam (NF) as the working electrode to reach a high catalyst loading (1 mg cm⁻²). For comparison, the same amount of Pt/C and RuO₂ were also supported on the NF as cathode and anode, respectively, to drive the overall water splitting process.

Fig. S1 SEM images of (a-b) ZnCo-ZIFs and (c-d) ZIF-67.

Fig. S2 XRD patterns of ZnCo-ZIFs and ZIF-67.

Fig. S3 Full scan XPS spectrum of ZnCoS-NSCNT/NP.

Fig. S4 (a,b) SEM images of Co₃ZnC/Co-NCNP. (c) XRD pattern, (d) SEM images, and (e, f) TEM image of ZnCoS-NSCNP.

Fig. S5 (a) XRD patterns, (b) SEM image, and (c, d) TEM images of Co-NSCNT/NP.

Fig. S6 (a) XRD patterns, (b) SEM image, and (c, d) TEM images of CoS_2 -NSCNT/NP.

Fig. S7 (a) Nitrogen adsorption–desorption isotherm, and (b) BJH pore size distribution of ZnCoS-NSCNT/NP, $CoS_2-NSCNT/NP$ and ZnCoS-NSCNP.

Fig. S8 Cyclic voltammograms in the double-layer region of the electrodes loaded with (a) ZnCoS-NSCNT/NP, (b) $CoS_2-NSCNT/NP$, and (c) ZnCoS-NSCNP. (d) plot of current density vs. scan rate at 0.25 V vs. Ag/AgCl.

Fig. S9 (a) and (b) LSV curves of samples prepared with different Zn/Co molar ratios in precursor.

Fig. S10 (a, b) TEM image of ZnCoS-NSCNT/NP after 40 h of electrolysis in 1M KOH.

Fig. S11 High-resolution XPS spectra of Zn 2p before and after cycles in alkaline solution.

Fig. S12 The amount of gas theoretically calculated and experimentally measured versus time for overall water splitting of ZnCoS-NSCNT/NP.

Electrocatalysts	Overpotential (mV vs. RHE) at 10 mA·cm ⁻²	Tafel slope	Ref
ZnCoS-NSCNT/NP	270 mV	67 mV dec ⁻¹	This work
CoP/rGO	340 mV	66 mV dec ⁻¹	S1
NiCo ₂ S ₄	337 mV	64 mV dec ⁻¹	S2
Ni _x Co _{2x} (OH) _{6x} @Ni	305 mV	78 mV dec ⁻¹	S3
Zn-Co-S/TM	330 (20 mA cm ⁻²)	79 mV dec ⁻¹	S4
N-CG-CoO	340 mV	71 mV dec ⁻¹	S5
CoS ₂ NTA	276 mV	81 mV dec-1	S6
Co@Co ₃ O ₄ -NC	391 mV	102 mV dec ⁻¹	S7

Table S1. Comparison of electrochemical parameters of $Co_3ZnC/Co-NCCP$ and

other reported OER catalysts in 1M KOH

Electrocatalysts	Overpotential (mV vs. RHE) at 10 mA·cm ⁻²	Tafel slope	Ref
ZnCoS-NSCNT/NP	152 mV	103 mV dec ⁻¹	This work
Zn-Co-S NN/CFP	234 mV	109 mV dec ⁻¹	S8
MoS_{2^+x} nanoparticles	310 mV	84 mV dec ⁻¹	S9
NiSe ₂ nanosheets	184 mV	184 mV dec ⁻¹	S10
Co ₉ S ₈ @MoS ₂ /C	190 mV	110 mV dec ⁻¹	S11
Ni ₃ S ₂ particles	335 mV	97 mV dec ⁻¹	S12
CP/CTs/Co-S	190 mV	131 mV dec ⁻¹	S13
NiCo ₂ S ₄	260 mV	141 mV dec ⁻¹	S14

Table S2. Comparison of electrochemical parameters of $Co_3ZnC/Co-NCCP$ andother reported HER catalysts in 1M KOH.

REFERENCES

[S1] L. Jiao, Y. X. Zhou and H. L. Jiang, Chem. Sci., 2016, 7, 1690–1695.

[S2] J. Y. Jiang, C. Y. Yan, X. H. Zhao, H. X. Luo, Z. M. Xue and T. C. Mu, Green Chem., 2017, 19, 3023–3031.

[S3] Z. Q. Liu, G. F. Chen, P. L. Zhou, N. Li and Y. Z. Su, J. Power Sources 2016, 317, 1–9.

[S4] Y. H. Liang, Q. Liu, Y. L. Luo, X. P. Sun, Y. Q. He and A. M. Asiri, Electrochim. Acta 2016, 190, 360–364.

[S5] S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, Energy Environ. Sci., 2014, 7, 609–616.

[S6] C. Guan, X. M. Liu, A. M. Elshahawy, H. Zhang, H. J. Wu, S. J. Pennycook, and J. Wang, Nanoscale Horiz., 2017, 2, 342–348.

[S7] C. D. Bai, S. S. Wei, D. R. Deng, X. D. Lin, M. S. Zheng and Q. F. Dong, J. Mater. Chem. A 2017, 5, 9533–9536.

[S8] X. Y. Wu, X. P. Han, X. Y. Ma, W. Zhang, Y. D. Deng, C. Zhong and W. B.Hu ACS Appl. Mater. Interfaces 2017, 9, 12574–12583

[S9] C. G. Morales-Guio, L. Liardet, M. T. Mayer, S. D. Tilley, M. Graetzel and X.Hu, Angew. Chem. Int. Ed. 2015, 54, 664–667.

[S10] H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang and S. Jin, Chem. Mater. 2015, 27, 5702–5711.

[S11] H. Zhu, J. Zhang, R. Y. zhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao and X. Zhang, Adv. Mater. 2015, 27, 4752–4759.

[S12] N. Jiang, Q. Tang, M. Sheng, B. You, D. E. Jiang and Y. Sun, Catal. Sci. Technol. 2016, 6, 1077–1084

[S13] J. Wang, H. X. Zhong, Z. L. Wang, F. L. Meng, X. B. Zhang, ACS Nano 2016, 10, 2342–2348.

[S14] D. Liu, Q. Lu, Y. L. Luo, X. P. Sun and A. M. Asiric, Nanoscale, 2015, 7,15122–15126.