Supporting online Materials for

## Highly efficient bifunctional catalytic activity of bismuth rhodium oxide pyrochlore

## through tuning the covalent character for rechargeable aqueous Na-air batteries

Myeongjin Kim, Hyun Ju and Jooheon Kim\*

School of Chemical Engineering & Materials Science, Chung-Ang University, 211 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea

\*Corresponding author: Jooheon Kim, Tel:+82-2-820-5763; Fax:+82-2-812-3495; E-mail address:

jooheonkim@cau.ac.kr (J. Kim)

## Materials and methods

**Preparation of phosphate ion functionalized Bi**<sub>2</sub>**Rh**<sub>2</sub>**O**<sub>6.8</sub>. The buffer solution was made with a mixture of 1 M ammonia solution,  $3.42 \times 10^{-2}$  mol anhydrous ethylenediaminetetraacetic acid and 1.5 mL nitric acid at a solution pH of 7. To prepare the Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>, 0.3173 g of bismuth (III) acetate, 0.2374 g of rhodium (III) nitrate solution and 10 g anhydrous citric acid were dissolved and stirred with the buffer solution for 24 h at 150 °C. The gelled solution was dried in an oven at 200 °C for 12 h. The prepared dried powder was crystallized at 1350 °C for 8 h to produce single crystalline Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> nanoparticles. In order to functionalize the phosphate ion, the Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> nanoparticles were suspended in a 0.5 M ammonium dihydrogen phosphate solution at 120 °C for 36 h. After the treatment, the resulting particles were rinsed with deionized water, filtered several times and vacuum-dried at 80 °C for 12 h.

**Electrochemical characterization.** The OER/ORR activities were measured using a rotating disk electrode (RDE) and a three-electrode electrochemical cell. A Pt wire, Ag/AgCl, and glassy carbon rotating disk electrode were used as a counter, reference and working electrode. The electrolyte used in OER/ORR was 0.1 m KOH solution. Pure oxygen gas (99.9%) was purged for 30 min before RDE experiment to make the electrolyte saturated with oxygen. The catalyst (7.5 mg) was mixed with deionized water (0.1 mL), ethanol (0.86 mL), and 5 wt% Nafion (0.038 mL, 5 wt% in isopropanol). The resulting slurry was ultra-sonicated for 30 min to generate a catalyst ink. The ink (10.0  $\mu$ L) was pipetted onto the 0.2475 cm<sup>2</sup> glassy carbon electrode. Pt on Vulcan carbon black (Pt/C, JM) and 20 wt% Ir on Vulcan (Ir/C, Premetek) were measured for comparison. The catalyst ink was prepared as follows. The Pt/C (or Ir/C) catalyst (5 mg) was mixed with deionized water (0.1 mL), ethanol (1.06 mL), and 5 wt% Nafion (0.04 mL, in isopropanol). The resulting slurry was ultrasonicated for 30 min to generate a catalyst ink. The ink (6.0  $\mu$ L) was pipetted onto the 0.2475 cm<sup>2</sup> glassy carbon electrode. All potentials are reported versus the RHE, and for conversion of the obtained potential (vs Ag/AgCl) to RHE, the following equation:

$$E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.0592 \text{ pH} + E_{\text{Ag/AgCl}}^0 \tag{1}$$

Where,  $E_{Ag/AgCl}^{0}$  (in 1 M KCl) = +0.235 V, pH = 12.9 for 0.1 M KOH. Koutecky-Levich (K-L) plots

were evaluated at various potentials. The slope of their best linear fit lines was used to calculate the number electrons transferred (n) on the basis of the following:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
(2)

where, J is the measured disk current density;  $J_K$  and  $J_L$  are the kinetic and diffusion limiting current densities, respectively; and  $\omega$  is the electrode rotation speed. B is the so-called "B-factor", which is given by the following equation:

$$B = 0.62nFC_{o}D_{o}^{2/3}v^{-1/6}$$
(3)

where n is the apparent number of electrons transferred in the reaction, F is the Faraday constant (96485 C mol<sup>-1</sup>),  $D_0$  is the diffusion coefficient of  $O_2$  in 0.1 M KOH (1.9 x 10<sup>-5</sup> cm<sup>2</sup> s<sup>-1</sup>), v and  $C_0$  are the kinetic viscosity of the solution (0.01 cm<sup>2</sup> s<sup>-1</sup>) and the concentration of  $O_2$  dissolved in 0.1 M KOH (1.2 x 10<sup>-6</sup> mol cm<sup>-3</sup>). The constant 0.62 is adopted when the rotation speed is expressed in rad.

Anode and electrolyte preparatoin. A Na metal (99.9%) was purchased from Sigma-Aldrich, and was attached to the surface of Ni mesh for use as the anode. An organic nonaqueous liquid electrolyte, 1 M NaCF<sub>3</sub>SO<sub>3</sub> in tetraethylene glycol dimethyl ether (TEGDME) and an aqueous liquid electrolyte of 0.1 M NaOH aqueous solution were purchased from Sigma-Aldrich. A Na super ionic conducting (NASICON) membrane, Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub>, ceramic plate was used as the solid electrolyte. Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> was prepared by a solid-state reaction method reported elsewhere.<sup>1,2</sup>

Air cathode preparatoin. The air cathode included a catalyst layer and a gas diffusion layer. Teflontreated carbon paper (Fuel Cell Store) was used as the gas diffusion layer. Catalyst ink solutions were prepared by mixing the P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> (90 wt%) with polyvinylidene fluoride (10 wt%) as a binder and *N*-methyl-2-pyrrolidone as a solvent. The catalyst ink solution was sprayed onto one side of the Teflon-treated carbon paper. The area of the air electrode was 4 cm<sup>2</sup>, and the mass loading of the catalyst layer was 2.5 mg cm<sup>-2</sup>.

**Na-air battery assembly and testing.** In order to construct the aqueous Na-air cell, initially, the negative electrode was fabricated in a glove box as the pouch cell. The metallic sodium electrode attached with nickel mesh was inserted into the pouch cell, followed by injection of an organic

electrolyte. Thereafter, the separator solid electrolyte membrane (NASICON) was introduced and the pouch cell was sealed in the globe box with one side of the solid electrolyte membrane exposed to air and the other side in contact with the organic electrolyte (1 M NaCF<sub>3</sub>SO<sub>3</sub>/TEGDME). The cathode compartment was fabricated by directly dipping the P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> air electrode in aqueous electrolyte (0.1 M NaOH) and exposing to ambient air. As a control cathode compartment, Pt/C-coated carbon paper, Ir/C-coated carbon paper, and bare carbon paper were also prepared by the same process. The power density was calculated by following equation:

$$P_s = I_s \times V_{ad} \tag{4}$$

where  $P_s$ ,  $I_s$  and  $V_{ad}$  are power density, applied current density and average discharge voltage, respectively.



Figure S1. XRD patterns for P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> and Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>.



**Figure S2.** (a) Low magnification of HR-TEM image for  $P-Bi_2Rh_2O_{6.8}$ . (b) High magnification of HR-TEM image for  $P-Bi_2Rh_2O_{6.8}$ .



**Figure S3.** (a) XPS O 1s spectra of Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>. (b) XPS O 1s spectra of P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>. (c) XPS P 2p spectra of Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>. (d) XPS P 2p spectra of P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>.



Figure S4. CV curves for  $Bi_2Rh_2O_{6.8}$  in  $N_2$  and  $O_2$  saturated 0.1 M KOH solution with a scan rate of 100 mV s<sup>-1</sup>.



Figure S5. (a) ORR LSV curves for P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> at different rotating speeds with a scan rate of 10 mV s<sup>-1</sup>. (b) ORR LSV curves for Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> at different rotating speeds with a scan rate of 10 mV s<sup>-1</sup>.
(b) ORR LSV curves for Pt/C at different rotating speeds with a scan rate of 10 mV s<sup>-1</sup>.



**Figure S6.** (a) Koutecky-Levich plots derived from the ORR LSV curves of  $P-Bi_2Rh_2O_{6.8.}$  (b) Koutecky-Levich plots derived from the ORR LSV curves of  $Bi_2Rh_2O_{6.8.}$  (c) Koutecky-Levich plots derived from the ORR LSV curves of Pt/C.



Figure S7. Normalized Rh K-edge XANES spectra of Rh foil, Rh<sub>2</sub>O<sub>3</sub>, P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> and Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>.



Figure S8. Normalized Bi  $L_{III}$ -edge XANES spectra of  $Bi_2O_3$ , P- $Bi_2Rh_2O_{6.8}$  and  $Bi_2Rh_2O_{6.8}$ .



Figure S9. Normalized O K-edge XANES total electron yield mode spectra of the  $P-Bi_2Rh_2O_{6.8}$  and  $Bi_2Rh_2O_{6.8}$ .



 $\textbf{Figure $10.} Comparison of covalency value of P-Bi_2Rh_2O_{6.8}, Bi_2Rh_2O_{6.8}, Pb_2Ru_2O_{6.5} and Sm_2Ru_2O_7.$ 



Figure S11. Comparison of the overpotential gap of the P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub>, Pt/C, Ir/C and carbon paper.



**Figure S12.** Cycling stability of (a) Pt/C, (b) Ir/C and (c) carbon paper electrode up to 50 cycles with terminated charge and discharge voltage and round trip efficiency.



**Figure S13.** Cycling terminated charge and discharge voltage and round trip efficiency profile of P-Bi<sub>2</sub>Rh<sub>2</sub>O<sub>6.8</sub> at different current densities.

| Catalyst                                           | Electrolyte | E <sub>ORR</sub><br>[at -3 mA cm <sup>-2</sup> ] | Ref       |
|----------------------------------------------------|-------------|--------------------------------------------------|-----------|
| Mn oxide                                           | 0.1 M KOH   | 0.73V                                            | 3         |
| PCN-CFP                                            | 0.1 M KOH   | 0.67V                                            | 4         |
| Ni <sub>3</sub> Fe/N-C sheets                      | 0.1 M KOH   | 0.78V                                            | 5         |
| NiCo <sub>2</sub> O <sub>4</sub> /G                | 0.1 M KOH   | 0.56V                                            | 6         |
| N, S-CN                                            | 0.1 M KOH   | 0.77V                                            | 7         |
| $Co_3O_4/2.7Co_2MnO_4$                             | 0.1 M KOH   | 0.68V                                            | 8         |
| Co/N-C-800                                         | 0.1 M KOH   | 0.74V                                            | 9         |
| NiCo <sub>2</sub> S <sub>4</sub> @N/S-rGO          | 0.1 M KOH   | 0.72V                                            | 10        |
| $\mathrm{Bi}_{2}\mathrm{Rh}_{2}\mathrm{O}_{6.8}$   | 0.1 M KOH   | 0.797V                                           | This work |
| P-Bi <sub>2</sub> Rh <sub>2</sub> O <sub>6.8</sub> | 0.1 M KOH   | 0.846V                                           | This work |

**Table S1.** Comparison of the ORR activity of  $P-Bi_2Rh_2O_{6.8}$  with other electrocatalysts previously reported.

| Table   | <b>S2.</b> | Comparison     | of   | oxygen   | electroc | le activ | vity o | f P-Bi  | <sub>2</sub> Rh <sub>2</sub> O | 9 <sub>6.8</sub> with | n other | electroca | talysts |
|---------|------------|----------------|------|----------|----------|----------|--------|---------|--------------------------------|-----------------------|---------|-----------|---------|
| previo  | usly       | reported, inc  | ludi | ng metal | oxide    | based,   | perovs | skite b | ased o                         | carbon                | based,  | pyrochole | oxide   |
| based l | bifun      | ctional electr | ocat | alysts.  |          |          |        |         |                                |                       |         |           |         |

| Catalyst               |                                                  | $E_{OER,\mbox{ at }10\mbox{ mA cm-2}}$ – $E_{ORR,\mbox{ at }-3\mbox{ mA cm-2}}$ 2 | Ref |
|------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|-----|
|                        | CoO/N-Graphene                                   | 0.76V                                                                             | 11  |
|                        | MnO <sub>x</sub> Film                            | 1.06V                                                                             | 12  |
|                        | MnCoO <sub>x</sub> /N-Carbon                     | 0.84V                                                                             | 13  |
|                        | Co <sub>3</sub> O <sub>4</sub> /N-Graphene       | 0.71V                                                                             | 14  |
| Metal oxide-based      | Co <sub>3</sub> O <sub>4</sub> -Carbon           | 0.74V                                                                             | 15  |
|                        | NiCo <sub>2</sub> O <sub>4</sub> /Graphene       | 0.96V                                                                             | 6   |
|                        | Mn <sub>x</sub> O <sub>y</sub> /N-Carbon         | 0.87V                                                                             | 16  |
|                        | LT-Li <sub>0.5</sub> CoO <sub>2</sub>            | 1.00V                                                                             | 17  |
|                        | Co <sub>3</sub> O <sub>4</sub> /N,S-Carbon       | 0.79V                                                                             | 18  |
|                        | La(BaSr)CoFeO                                    | 1.01V                                                                             | 19  |
| Demonstrite transf     | LaNiO <sub>3-δ</sub>                             | 1.04V                                                                             | 20  |
| Perovskite-based       | nsLANiO <sub>3</sub> /N-Carbon                   | 0.97V                                                                             | 21  |
|                        | LaNiO <sub>3</sub> /N-CNT                        | 0.95V                                                                             | 22  |
|                        | N-Graphene/CNT                                   | 0.95V                                                                             | 23  |
|                        | N-Carbon                                         | 0.84V                                                                             | 24  |
|                        | Fe, N-Carbon                                     | 0.76V                                                                             | 25  |
| Cashar basad           | N-CNT/Graphene                                   | 0.91V                                                                             | 26  |
| Carbon-based           | P, N-Carbon Fiber                                | 0.96V                                                                             | 4   |
|                        | GNS/MC                                           | 0.72V                                                                             | 27  |
|                        | Fe-Mc                                            | 0.88V                                                                             | 27  |
|                        | N, S, Fe-Carbon                                  | 0.91V                                                                             | 28  |
| Pyrochlore oxide-based | Pb <sub>2</sub> Ru <sub>2</sub> O <sub>6.5</sub> | 0.82V                                                                             | 29  |

| $Y_2[Ru_{2\text{-}x}Y_x]O_{7\text{-}y}$ | 1.03V | 30        |
|-----------------------------------------|-------|-----------|
| $Bi_2Rh_2O_{6.8}$                       | 0.87V | This work |
| <br>$P\text{-}Bi_2Rh_2O_{6.8}$          | 0.67V | This work |

Table S3. Comparison of electrochemical performance of  $P-Bi_2Rh_2O_{6.8}$  with other air electrodes

previously reported

| Na-air battery                                                | Current density          | Round trip<br>Efficiency | Cycles | Power<br>density                                      | Ref          |
|---------------------------------------------------------------|--------------------------|--------------------------|--------|-------------------------------------------------------|--------------|
| Graphitic<br>nanoshell/mesoporous carbon //<br>Aqueous        | N/A                      | 96.2%                    | 10     | 78.2 mW g <sup>-1</sup><br>at 60 mA g <sup>-1</sup>   | 27           |
| VGC // Aqueous                                                | 4 mA g <sup>-1</sup>     | 81%                      | 50     | 104 mW g <sup>-1</sup><br>at 80 mA g <sup>-1</sup>    | 31           |
| Porous CaMnO <sub>3</sub> /C // Non-<br>Aqueous               | 100 mA g <sup>-1</sup>   | 55%                      | 80     | N/A                                                   | 32           |
| MnO <sub>2</sub> /rGO/carbon paper //<br>Aqueous              | 15 mA g <sup>-1</sup>    | 81%                      | 20     | N/A                                                   | 33           |
| Pt/C // Aqueous                                               | 0.025 mA g <sup>-1</sup> | 84.3%                    | 18     | N/A                                                   | 34           |
| Co <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> // Aqueous    | 0.05 mA cm <sup>-2</sup> | 83%                      | 50     | N/A                                                   | 35           |
| P-Bi <sub>2</sub> Rh <sub>2</sub> O <sub>6.8</sub> // Aqueous | 0.01 mA cm <sup>-2</sup> | 94.9%                    | 50     | 181.2 mW g <sup>-1</sup><br>at 120 mA g <sup>-1</sup> | This<br>work |

Reference

- H. Kim, J.-S. Park, S. H. Sahgong, S. Park, J.-K. Kim and Y. Kim, J. Mater. Chem. A, 2014, 2, 19584–19588.
- 2. J.-K. Kim, E. Lee, H. Kim, C. Johnson, J. Cho and Y. Kim, ChemElectroChem, 2015, 2, 328–332.
- 3. Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.
- 4. T. Y. Ma, J. Ran, S. Dai, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Edit., 2015, 54, 4646-4650.
- 5. G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang and J. B. Goodenough, *Adv. Energy Mater.*, 2017, 7, 1601172.
- 6. D. U. Lee, B. J. Kim and Z. Chen, J. Mater. Chem. A, 2013, 1, 4754-4762.
- 7. K. Qu, Y. Zheng, S. Dai and S. Z. Qiao, Nano Energy, 2016, 19, 373-381.
- 8. D. Wang, X. Chen, D. G. Evans and W. Yang, Nanoscale, 2013, 5, 5312-5315.
- Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen and C. Li, *Nanoscale*, 2014, 6, 15080-15089.
- 10. Q. Liu, J. Jin and J. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 5002-5008.
- 11. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, Energy Environ. Sci., 2014, 7, 609-616.
- Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra and J. Yano, T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 8525-8534.
- A. Zhao, J. Masa, W. Xia, A. Maljusch, M.-G. Willinger, G. Clavel, K. Xie, R. Schlögl, W. Schuhmann and M. Muhler, J. Am. Chem. Soc., 2014, 136, 7551-7554.
- 14. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nat. Mater., 2011, 10, 780.
- 15. T. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grützke, P. Weide, M. Muhler and W. Schuhmann, Angew. Chem. Int. Ed., 2014, 53, 8508-8512.
- T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira and A. Manthiram, *Nat. Commun.*, 2014, 5, 3949.
- 18. C. Zhang, M. Antonietti and T. P. Fellinger, Adv. Funct. Mater., 2014, 24, 7655-7665.
- J. I. Jung, H. Y. Jeong, J. S. Lee, M. G. Kim and J. Cho, *Angew. Chem. Int. Ed.*, 2014, **126**, 4670-4674.

- 20. W. Zhou and J. Sunarso, J. Phys. Chem. Lett., 2013, 4, 2982-2988.
- 21. W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston and K. J. Stevenson, J. Phys. Chem. Lett., 2013, 4, 1254-1259.
- 22. Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang and Z. Chen, *Nano Lett.*, 2012, 12, 1946-1952.
- 23. Z. Wen, S. Ci, Y. Hou and J. Chen, Angew. Chem. Int. Ed., 2014, 53, 6496-6500.
- 24. Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi and K. Hashimoto, Nat. Commun., 2013, 4, 2390.
- 25. Y. Zhao, K. Kamiya, K. Hashimoto and S. Nakanishi, J. Phys. Chem. C, 2015, 119, 2583-2588.
- 26. H. W. Park, D. U. Lee, Y. Liu, J. Wu, L. F. Nazar and Z. Chen, J. Electrochem. Soc., 2013, 160, A2244-A2250.
- 27. J. Y. Cheon, K. Kim, Y. J. Sa, S. H. Sahgong, Y. Hong, J. Woo, S.-D. Yim, H. Y. Jeong, Y. Kim and S. H. Joo, *Adv. Energy Mater.*, 2016, 6, 1501794.
- N. R. Sahraie, J. P. Paraknowitsch, C. Gobel, A. Thomas and P. Strasser, *J. Am. Chem. Soc.*, 2014, 136, 14486-14497.
- 29. J. Park, M. Risch, G. Nam, M. Park, T. J. Shin, S. Park, M. G. Kim, Y. Shao-Horn and J. Cho, *Energy Environ. Sci.*, 2017, **10**, 129-136.
- 30. J. Park, M. Park, G. Nam, M.-G. Kim and J. Cho, Nano Letters, 2017, 17, 3974-3981.
- 31. Z. Khan, B. Senthilkumar, S. O. Park, S. Park, J. Yang, J. H. Lee, H.-K. Song, Y. Kim, S. K. Kwak and H. Ko, *J. Mater. Chem. A*, 2017, *5*, 2037-2044.
- 32. Y. Hu, X. Han, Q. Zhao, J. Du, F. Cheng and J. Chen, J. Mater. Chem. A, 2015, 3, 3320-3324.
- 33. Z. Khan, S. Park, S. M. Hwang, J. Yang, Y. Lee, H.-K. Song, Y. Kim and H. Ko, NPG Asia Mater., 2016, 8, e294.
- S. H. Sahgong, S. T. Senthilkumar, K. Kim, S. M. Hwang and Y. Kim, *Electrochem. Commun.*, 2015, 61, 53–56.
- 35. B. Senthilkumar, Z. Khan, S. Park, I. Seo, H. Ko and Y. Kim, J. Power Sources, 2016, 311, 29-34.