Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Fe(CN)₆³⁻ Ions-Modified MnO₂/Graphene Nanoribbons Enabling High

Energy Density Asymmetric Supercapacitors

Lizhi Sheng, Lili Jiang, Tong Wei, Qihang Zhou, Yuting Jiang, Zimu Jiang, Zheng Liu, and

Zhuangjun Fan*

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

*Corresponding author. Tel. /fax: +86 451 82569890. E-mail address: fanzhj666@163.com (Z. Fan)

Fig. S1. Nitrogen adsorption and desorption isotherms of the MnO_2/GR

Fig. S2. TGA curves the m-MnO₂/GR (6.1wt%), m-MnO₂/GR-2.7wt%, MnO₂/GR and $K_3Fe(CN)_6$ in air with a temperature range from 25 to 1300 °C. For MnO₂/GR TGA curve, the final product Mn₃O₄ is 89.7.[1] From the TGA curve of m-MnO₂/GR, if we assume that the total mass is 100, and the GR, MnO₂ and $K_3Fe(CN)_6$ are x, y and z, respectively, combined with TGA curve of $K_3Fe(CN)_6$, the following formulas are ture:

$$x + y + z = 100$$
 $x = 4.7$
 $y = 19x$ The result is $y = 89.2$
 $0.87y + 0.465z = 80.45$ $z = 6.1$

That is to say, the GR, MnO₂ and K₃Fe(CN)₆ contents are 4.7, 89.2 and 6.1 wt%, respectively.

Table S1. Comparison of the m-MnO $_2$ /GR with previously reported MnO $_2$ -based electrodes

Materials	Capacitance (F g ⁻¹)	Ref.
MnO ₂ nanosheet	300	[2]
MnO ₂ nanowires	340	[3]
Hierarchical porous C/MnO ₂	392	[4]
MnO ₂ /C	288	[5]
rGO/MnOx	202	[6]
MnO ₂ /GO	297	[7]
MnO ₂ /Ti ₃ C ₂	390	[8]
Metal-organic framework structure (NiHCF)/MnO2	224	[9]
Manganese hexacyanoferrate/MnO ₂	225.6	[10]
Ag/MnO ₂	198.9	[11]
Silicon diatom@MnO2	341.5	[12]
Ni(OH) ₂ /MnO ₂ core-shell nanowires	355	[13]
m-MnO ₂ /GR	435	This work

in concern of the specific capacitance.

Fig. S3. (a) CV curves of the m-MnO₂/GR (6.1wt%) and m-MnO₂/GR-2.7wt% electrodes at 100 mV s⁻¹. (b) Specific capacitances of the m-MnO₂/GR (6.1wt%) and m-MnO₂/GR-2.7wt% electrodes.

Fig. S4. Specific capacitances of the $m-MnO_2/GR$ electrode in 1 M Na₂SO₄ electrolyte and MnO₂/GR in 1 M Na₂SO₄/0.03 M K₃Fe(CN)₆ electrolyte.

Fig. S5. Cycling performance of the m-MnO₂/GR electrode measured at 20 A g^{-1} for 10 000

cycles.

Fig. S6. (a) Separation of the capacitive (shaded region) and diffusion currents in the MnO_2/GR at a scan rate of 20 mV s⁻¹. (b) Contribution ratio of the diffusion-controlled and capacitance-controlled charges at different scan rates.

Fig. S7. Electrochemical performances of the GR electrode using a three-electrode cell in 1M Na_2SO_4 electrolyte within a potential window of -1 to 0 V (vs. SCE). (a) CV curves of the GR at various scan rates in 1 M Na_2SO_4 electrolyte. (b) Specific capacitances of the GR electrode.

Fig. S8. (a) CV curves of the GR and m-MnO₂/GR in a three-electrode cell at 100 mV s⁻¹. (b) CV curves of m-MnO₂/GR//GR ASC operated in different voltage windows at 50 mV s⁻¹.

Fig. S9. Gravimetric specific capacitances of the $m-MnO_2/GR//GR$ ASC at various current densities ranging from 1 to 50 A g⁻¹.

Electrode materials		Electrolyte	Voltage	E	Р	Ref.
Anode	Cathode		(V)	(Wh kg ⁻¹)	(W kg ⁻¹)	
N-doped hollow carbon spheres(NHCSs)	MnO ₂ /NHCSs	1 M Na ₂ SO ₄	1.8	26.8	233	[4]
Activated graphene oxide	Si-diatom@MnO ₂	1 M Na ₂ SO ₄	1.6	23.2	120	[12]
TiO ₂	MnO_2	1 M LiClO ₄	2.0	7.7	762.5	[14]
Three-dimensional N-doped reduced graphene oxide (3D-NRGO)	MnO ₂ /3D-NRGO	1 M Na ₂ SO ₄	2.0	35.28	200	[15]
Nitrogen-doped porous carbon	Porous carbon@MnO ₂	1 M Na ₂ SO ₄	1.8	34.7	1000	[16]
Hierarchical porous carbon (HPC)	MnO ₂ /GO	1 M Na ₂ SO ₄	2.0	46.7	100	[7]
Cross-linked carbon nanosheets (CCNs)	MnO ₂ @CCNs	1 M Na ₂ SO ₄	1.9	23.6	188.8	[17]
Microwave exfoliated graphite oxide	MnO ₂ nanosheets arrays	1 M Na ₂ SO ₄	1.6	25.8	400	[18]
N-doped carbon	MnO ₂ /C	1 M Na ₂ SO ₄	2.0	39.5	200	[5]
Polypyrrole(PPy)	MnO ₂	1 M Na ₂ SO ₄	1.7	27.2	850	[19]
p-BC/N-5M	p-BC@MnO ₂ -2h	1 M Na ₂ SO ₄	2.0	32.9	285	[20]
Graphene/MoO ₃	Graphene/MnO ₂	1 M Na ₂ SO ₄	2.0	42.6	276	[21]
CNT	MnO_2	1 M Na ₂ SO ₄	2.0	47.4	200	[22]
Graphene	Graphene/MnO ₂	1 M Na ₂ SO ₄	2.0	30.4	100	[23]
ACF	Graphene/MnO ₂	1 M Na ₂ SO ₄	1.8	51.1	102	[24]
Graphene hydrogel	MnO ₂	0.5M Na ₂ SO ₄	2.0	23.2	1000	[25]

Table S2. Comparison of the m-MnO₂/GR//GR ASC with previously reported MnO₂-based ASCs in aqueous electrolytes.

Electrode materials		Electrolyte	Voltage	Е	Р	Ref.
Anode	Cathode	-	(V)	(Wh kg ⁻¹)	(W kg ⁻¹)	
Activated graphene	Activated graphene/MnO ₂	1 M Na ₂ SO ₄	2.0	24.3	24500	[26]
Carbon spheres	Carbon spheres/MnO ₂	1 M Na ₂ SO ₄	2.0	22.1	7000	[27]
CNT/In ₂ O ₃	CNT/MnO ₂	1 M Na ₂ SO ₄	2.0	25.5	30000	[28]
E-CMG	E-CMG/MnO ₂	1 M Na ₂ SO ₄	2.0	44	11200	[29]
CNT/V ₂ O ₅	MnO ₂ /carbon	1 M Na ₂ SO ₄	1.6	16	75	[30]
SWNTs	Graphene/MnO ₂	0.5M Na ₂ SO ₄	1.5	12.5	80000	[31]
Graphene/Ag	Graphene/MnO ₂	1 M Na ₂ SO ₄	1.8	50.8	101.5	[32]
AC	AC/MnO ₂	0.5M Na ₂ SO ₄	1.8	10.4	14700	[33]
Graphene	Graphene/MnO ₂	1 M Na ₂ SO ₄	1.7	21.3	250	[34]
AC	MnO_2	2 M CaSO ₄	2.0	22.5	1000	[35]
AC	AC/MnO ₂	0.5M Na ₂ SO ₄	2.0	18.2	10100	[36]
GR	m-MnO ₂ /GR	1 M Na ₂ SO ₄	1.8	57.8	1200	This work

Fig. S10. Cycling performance of the MnO₂/GR//GR ASC.

References

- 1. Z. Liu, K. Xu, H. Sun and S. Yin, Small, 2015, 11, 2182-2191.
- P. Gao, P. Metz, T. Hey, Y. Gong, D. Liu, D. D. Edwards, J. Y. Howe, R. Huang and S. T. Misture, *Nat. Commun.*, 2017, 8, 14559.
- H. Lv, X. Gao, Q. Xu, H. Liu, Y. G. Wang and Y. Xia, ACS Appl. Mater. Interfaces, 2017, 9, 40394-40403.
- 4. T. Liu, C. Jiang, W. You and J. Yu, J. Mater. Chem. A, 2017, 5, 8635-8643.
- Y. Dai, L. Chen, V. Babayan, Q. Cheng, P. Saha, H. Jiang and C. Li, *J. Mater. Chem. A*, 2015, 3, 21337-21342.
- Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, P. Zou, Z. Lin, H. J. Fan, F. Kang, C.-P. Wong and C. Yang, *Energy Environ. Sci.*, 2017, 10, 941-949.
- Y. Zhao, W. Ran, J. He, Y. Huang, Z. Liu, W. Liu, Y. Tang, L. Zhang, D. Gao and F. Gao, *Small*, 2015, 11, 1310-1319.
- W. Liu, Z. Wang, Y. Su, Q. Li, Z. Zhao and F. Geng, Adv. Energy Mater., 2017, 7, 1602834.
- 9. Y. Wang and Q. Chen, ACS Appl. Mater. Interfaces, 2014, 6, 6196-6201.
- Y. Wang, H. Zhong, L. Hu, N. Yan, H. Hu and Q. Chen, J. Mater. Chem. A, 2013, 1, 2621.
- 11. S. Lu, D. Yan, L. Chen, G. Zhu, H. Xu and A. Yu, Mater. Lett., 2016, 168, 40-43.
- Q. J. Le, T. Wang, D. N. H. Tran, F. Dong, Y. X. Zhang and D. Losic, *J. Mater. Chem. A*, 2017, 5, 10856-10865.
- 13. H. Jiang, C. Li, T. Sun and J. Ma, Chem. Commun., 2012, 48, 2606-2608.

- 14. J. Gu, C. Jin, Z. Bian, X. Liu, S. Li, S. Tang and D. Yuan, J. Nanopart. Res., 2017, 19.
- P. Wang, S. Sun, S. Wang, Y. Zhang, G. Zhang, Y. Li, S. Li, C. Zhou and S. Fang, J. Appl. Electrochem., 2017, 47, 1293-1303.
- Y. Luan, Y. Huang, L. Wang, M. Li, R. Wang and B. Jiang, *J. Electroanal. Chem.*, 2016, 763, 90-96.
- Y. Li, N. Yu, P. Yan, Y. Li, X. Zhou, S. Chen, G. Wang, T. Wei and Z. Fan, J. Power Sources, 2015, 300, 309-317.
- M. Huang, X. L. Zhao, F. Li, L. L. Zhang and Y. X. Zhang, J. Power Sources, 2015, 277, 36-43.
- 19. F. Grote and Y. Lei, Nano Energy, 2014, 10, 63-70.
- L. F. Chen, Z. H. Huang, H. W. Liang, Q. F. Guan and S. H. Yu, *Adv. Mater.*, 2013, 25, 4746-4752.
- J. Chang, M. Jin, F. Yao, T. H. Kim, V. T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie and Y. H. Lee, *Adv. Funct. Mater.*, 2013, 23, 5074-5083.
- 22. H. Jiang, C. Li, T. Sun and J. Ma, Nanoscale, 2012, 4, 807-812.
- Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu and H.-M. Cheng, ACS Nano, 2010, 4, 5835-5842.
- Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li and F. Wei, *Adv. Funct. Mater.*, 2011, 21, 2366-2375.
- H. Gao, F. Xiao, C. B. Ching and H. Duan, ACS Appl. Mater. Interfaces, 2012, 4, 2801-2810.
- 26. X. Zhao, L. Zhang, S. Murali, M. D. Stoller, Q. Zhang, Y. Zhu and R. S. Ruoff, ACS

Nano, 2012, 6, 5404-5412.

- 27. Z. Lei, J. Zhang and X. S. Zhao, J. Mater. Chem., 2012, 22, 153-160.
- 28. P.-C. Chen, G. Shen, Y. Shi, H. Chen and C. Zhou, ACS Nano, 2010, 4, 4403-4411.
- B. G. Choi, M. Yang, W. H. Hong, J. W. Choi and Y. S. Huh, ACS Nano, 2012, 6, 4020-4028.
- Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei and Y. Lu, *Adv. Funct. Mater.*, 2009, **19**, 3420-3426.
- G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui and Z. Bao, *Nano Lett.*, 2011, 11, 2905-2911.
- 32. Y. Shao, H. Wang, Q. Zhang and Y. Li, J. Mater. Chem. C, 2013, 1, 1245-1251.
- Y.-T. Wang, A.-H. Lu, H.-L. Zhang and W.-C. Li, J. Phys. Chem. C, 2011, 115, 5413-5421.
- L. Deng, G. Zhu, J. Wang, L. Kang, Z.-H. Liu, Z. Yang and Z. Wang, J. Power Sources, 2011, 196, 10782-10787.
- T. Tomko, R. Rajagopalan, M. Lanagan and H. C. Foley, J. Power Sources, 2011, 196, 2380-2386.
- 36. P.-C. Gao, A.-H. Lu and W.-C. Li, J. Power Sources, 2011, 196, 4095-4101.