Controlled synthesis of Ni(OH)₂/Ni₃S₂ hybrid Nanosheet Arrays as Highly Active and stable Electrocatalysts for Water Splitting

Xiaoqiang Du^{a*}, Zhi Yang^a, Yu Li^a, Yaqiong Gong^a and Min Zhao^{b*} **Characterization technique**

The same volume of gas sample in the headspace of the electrolytic cell was withdrawn by a SGE gas-tight syringe and analyzed by gas chromatography (GC). The H_2 and O_2 in the sampled gas was separated by passing through a 2 m × 3 mm packed molecular sieve 5A column with an Ar carrier gas and quantified by a Thermal Conductivity Detector (TCD)(Shimadzu GC-9A).

Fig.S1 EDS of Ni(OH)₂.

Fig.S2 EDS of $Ni(OH)_2/Ni_3S_2$ -9h.

Fig.S3 EDS of Ni(OH)₂/Ni₃S₂-12h.

Fig.S4 EDS of Ni(OH)₂/Ni₃S₂-15h.

Fig. S5 CV_S of Ni(OH)₂/Ni₃S₂ with different scan rates (10-50 mV s⁻¹) in the region of 1.02-1.12V vs RHE.

Fig. S6 CV_S of Ni(OH)₂/Ni₃S₂ with different scan rates (10-50 mV s⁻¹) in the region of -0.1— 0.02V vs RHE.

Fig. S7 (a) Polarization curves of $Ni(OH)_2/Ni_3S_2$ -12h and IrO_2 in 1.0 M KOH at a potential sweep rate of 5 mV s⁻¹.

Fig. S8 (a) Polarization curves of $Ni(OH)_2/Ni_3S_2$ -12h and Pt/C/NF in 1.0 M KOH at a potential sweep rate of 5 mV s⁻¹.

Fig. S9(a) Electrocatalytic efficiency of H₂ production over Ni(OH)₂/Ni₃S₂-12h at a potential of ca. -0.2V, measured for 60 min.(b) Electrocatalytic efficiency of O₂ production over Ni(OH)₂/Ni₃S₂-12h at a potential of ca. 1.50 V, measured for 60 min.

Fig. S10 H_2 and O_2 production over Ni(OH)₂/Ni₃S₂-12h at a potential of ca. 1.60 V, measured for 60 min.

Fig. S11 XPS spectra of the (a) Survey, (b) Ni 2p and (c) S 2p peaks of Ni_3S_2/NF . The binding energy of each element was corrected by the C1s peak (284.8 eV).

Fig. S12 XPS spectra of the (a) Survey, (b) Ni 2p and (c) O 1s peaks of $Ni(OH)_2/NF$. The binding energy of each element was corrected by the C1s peak (284.8 eV).