Supplementary Information

Black Phosphorus Quantum Dots as Dual-Functional Electron Selective Materials for Efficient Plastic Perovskite Solar Cells

Nianqing Fu,^a* Chun Huang,^b Peng Lin,^b Mingshan Zhu,^c Tao Li,^b Mao Ye,^b Shenghuang Lin,^d*

Guoge Zhang,^a Jun Du,^a Chang Liu,^e Baomin Xu,^e Danyang Wang,^f and Shanming Ke,^{b,g,*}

^{*a*} School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

^bGuangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.

^c School of Environment, Jinan University, Guangzhou 510632, P. R. China.

^d Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.

^{*e*} Department of Materials Science and Engineering, South University of Science and Technology, Shenzhen 518055, China.

^{*f*} School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.

^gSchool of Materials Science and Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.

Corresponding authors:

Dr. N. Q. Fu, E-mail: msnqfu@scut.edu.cn

Dr. S. Ke, E-mail: smke@szu.edu.cn

Dr. S. Lin, E-mail: shenghuanglinchina@gmail.com

ESL		Processing	Substaats	Device	Efficiency	Published	Ref.
materials	Processing route	temperature	temperature		Efficiency	year	No.
DCDM			F1 11	T (1	9.4	2014	S 1
РСВМ	Solution-processed	Koom I	Flexible	Inverted	18.1%	2017	S2
Organic molecular CDIN	Solution-processed	100 °C	Flexible	Normal	14.2%	2016	S3
Solid-State Ionic-Liquids	Solution-processed	70 °C	Flexible	Normal	16.09%	2016	S4
Al ₂ O ₃	Solution-processed	150 °C	Rigid	Normal	12.3%	2013	S5
	ALD+UV-irradiation	Room T	Flexible	Normal	7.4%	2015	S 6
TiO ₂	Solution-process photonic curing	80 °C	Flexible	Normal	11.2%	2016	S 7
	Magnetron sputtering	Room T	Flexible	Normal	15.07%	2015	S 8
	Magnetron sputtering	Room T	Flexible	Normal	15.8%	2017	S9
	Electron beam evaporated	100 °C	Flexible	Normal	13.5%	2015	S10
Nb-doped TiO ₂	UV-assisted solution process	<50 °C	Flexible	Normal	16.01%	2016	S11
Hydrogen doping TiO ₂ +PCBM	magnetron sputtering	Room T	Rigid	Normal	19.3%	2017	S12
	Solution-processed	150 °C	Flexible	Normal	11%	2015	S 13
ZnO	Solution-processed	150 °C	Flexible	Normal	15.6%	2016	S14

Table S1. A survey of rigid and flexible PSCs employing low-temperature processedelectron selective layer (ESL).

	Solution-processed	150 °C	Rigid	Mesoporous	18.9%	2017	S15	
	ALD	100 °C	Flexible	Normal	15%	2016	S 16	
SnO ₂	ALD+water vapor treatment	100 °C	Flexible	Normal	17.08%	2017	S17	
	Solution-processed	150 °C	Rigid	Normal	19.9%	2016	S 18	
Sb-doped SnO ₂	Solution-processed	100 °C	Rigid	Normal	17.7%	2016	S 19	
Li-doped SnO ₂	Solution-processed	185 °C	Flexible	Normal	14.78%	2016	S20	
Zn ₂ SnO ₄	Solution-processed	100 °C	Flexible	Normal	14.85%	2015	S21	
	Solution processed + particle	100 °C	Flexible	Mesoporous	16%	2016	S22	
WO _x	Solution-processed	Room T	Rigid	Normal	14.9%	2015	S23	
In ₂ O ₃	Solution-processed	200 °C	Rigid	Normal	14.39%	2017	S24	
Nb ₂ O ₅	E-beam evaporated	Room T	Flexible	Normal	15.56%	2017	S25	
In_2S_3	Chemical bath	100 °C	Rigid	Normal	18.22%	2017	S26	
BPQDs	Solution-processed	60 °C	Rigid	Normal	14.6%	This w	'his work	
			Flexible	Normal	11.26%	This w	ork	

^a "Normal" represents that the PSCs were built in a planar structure

Reference

S1 J. You, Z. Hong, Y. (Michael) Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S.g.

Lu, Y. Liu, H. Zhou and Y. Yang, ACS Nano, 2014, 8, 1674-1680.

S2 C. Bi, B. Chen, H. Wei, S. DeLuca and J. Huang, Adv. Mater. 2017, 29, 1605900.

S3 Z. Zhu, J.-Q. Xu, C.-C. Chueh, H. Liu, Z. Li, X. Li, H. Chen and A. K.-Y. Jen, *Adv. Mater.*, 2016, **28**, 10786-10793.

S4 D. Yang, R. Yang, X. Ren, X. Zhu, Z. Yang, C. Li and S. (Frank) Liu, Adv. Mater.,

2016, **28**, 5206-5213.

S5 J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, *Energy Environ. Sci.*, 2013, 6, 1739-1743.

S6 F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, St. Razza, A.

D. Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore and T. M. Brown, *Adv. Energy Mater.*, 2015, **5**, 1401808.

S7 S. Das, G. Gu, P. C. Joshi, B. Yang, T. Aytug, C. M. Rouleau, D. B. Geoheganc and K. Xiao, *J. Mater. Chem. A*, 2016, 4, 9685-9690.

S8 D. Yang, R. Yang, J. Zhang, Z. Yang, S. (Frank) Liu and C. Li, *Energy Environ*. *Sci.*, 2015, **8**, 3208-3214.

S9 S. S. Mali, C. K. Hong, A. I. Inamdar, H. Imb and S. E. Shim, *Nanoscale*, 2017, **9**, 3095-3104.

S10 W. Qiu, U. W. Paetzold, R. Gehlhaar, V. Smirnov, H.-G. Boyen, J. G. Tait, B. Conings, W. Zhang, C. B. Nielsen, I. McCulloch, L. Froyen, P. Heremans and D. Cheynsa, *J. Mater. Chem. A*, 2015, **3**, 22824-22829.

S11 I. Jeong, H. Jung, M. Parkb, J. S. Park, H. J. Son, J. Joo, J. Lee, M. J. Ko, *Nano Energy*, 2016, **28**, 380-389.

S12 X. Yao, J. Liang, Y. Li, J. Luo, B. Shi, C. Wei, D. Zhang, B. Li, Y. Ding, Y. Zhao and X. Zhang, *Adv. Sci.*, 2017, **4**, 1700008.

S13 J. Zhang, E. José Juárez-Pérez, I. Mora-Seró, B. Viana and T. Pauporté, *J. Mater. Chem. A*, 2015, **3**, 4909-915.

S14 J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yub and S. H. Im, *J. Mater. Chem. A*, 2016, **4**, 1572-1578.

S15 J. Song, L. Liu, X.-F. Wang, G. Chen, W. Tian and T. Miyasakac, J. Mater. Chem. A, 2017, 5, 13439-13447.

S16 C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. Yu, P. Liu, N. Cheng, R. J. Ellingson, X. Zhao and Y. Yan, *J. Mater. Chem. A*, 2016, **4**, 12080-12087.

S17 C. Wang, L. Guan, D. Zhao, Y. Yu, C. R. Grice, Z. Song, R. A. Awni, J. Chen, J.Wang, X. Zhao, and Y. Yan, ACS Energy Lett., 2017, 2, 2118-2124.

S18 Q. Jiang, L. Zhang, H.Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J.Wu, X. Zhang and J. You, *Nat. Energy*, 2016, **14**, 16177.

S19 Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang and J. Huang, *ChemSusChem*, 2016, **9**, 2686-2691.

S20 M. Park, J.-Y. Kim, H. J. Son, C.-H. Lee, S. Soon Jang, M. J. Ko, *Nano Energy*, 2016, **26**, 208-215.

S21 S. S. Shin, W. S. Yang, J. H. Noh, J. H. Suk, N. J. Jeon, J. H. Park, J. S. Kim, W.M. Seong and S. Il Seok, *Nat. Commun.*, 2015, 6, 7410.

S22 S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y.-C. Joo, I. J. Park, J. H. Noh, and S. Il Seok, *J. Phys. Chem. Lett.*, 2016, **7**, 1845-1851.

- S23 Y. Hou, C. O. R. Quiroz, S. Scheiner, W. Chen, T. Stubhan, A. Hirsch, M. Halik, and C. J. Brabec, *Adv. Energy Mater.*, 2015, **5**, 1501056.
- S24 P. Chen, X. Yin, M. Que, X. Liu and W. Que, J. Mater. Chem. A, 2017, 5, 9641-9648.
- S25 J. Feng, Z. Yanga, D. Yang, X. Ren, X. Zhu, Z. Jin, W. Zi, Q. Wei, S. (Frank) Liu, *Nano Energy*, 2017, **36**, 1-8.

S26 Y. Hou, X. Chen, S. Yang, Y. L. Zhong, C. Li, H. Zhao, H. G. Yang, *Nano Energy*, 2017, **36**, 102-109.

The generation of Tauc Plot and extraction of Eg value:

The bandgap of a semiconductor can be expressed as $\alpha hv = C(hv - E_g)^n$ or

$$\left(\frac{Ah\nu}{K}\right)^{1/n} = h\nu - E_g$$

Where α is the absorption coefficient (m⁻¹), v is frequency of the light (s⁻¹), h is the Plank's constant (6.626×10⁻³⁴ J s), E_g is the bandgap energy (eV), A is the absorbance of the UV-Vis spectrum, C and K are proportionality constants, n is an exponent which has values of 1/2, 3/2, 2, and 3 for direct allowed, direct forbidden, indirect allowed, and indirect forbidden transitions.

Therefore, the correlation, $(\alpha hv)^{1/n}$ vs. hv- E_g , can be able to get the bandgap energy (E_g) by plotting $(\alpha hv)^{1/n}$ and hv- E_g as y and x axis, respectively. The proportionality constants C and K determine only the y value rather than the linear fit region. Since the BP is a direct bandgap semiconductor, the n value is 2 here. Once the linear fit is obtained, the E_g of the BPQDs can be then determined from the intercept of the linear fit in the lower energy absorption region of the plot of $(\alpha hv)^{1/n}$ vs. hv- E_g .

Fig. S1 Steady-state photoluminescence (PL) spectrometry of isoproponal (IPA) and BPQDs in IPA. Excitation wavelength of the laser source is 550 nm.

Fig. S2. (a) A typical room-temperature I-V curve of the BPQDs based FET. The inset reveals the device structure of BPQDs FET. (b) ID-VD curve of the FET.

Experimental details:

The transfer characteristics of the FET are measured at room temperature using the configuration presented as insert in Fig. S1a. For this measurement, metal contacts (gold) were first deposited on SiO₂/Si substrate by standard photolithography process to form bare gold contacts devices through a stencil mask aligned with the substrate. After that, a drop of BPQD solution was drop-casted on the bare devices with only gold interdigitated. The channel length and width of the device is 5 μ m and 20 μ m respectively. The source-drain V_{DS} was set at 0.1 V while the backgate voltage V_G was varied from -20 V to 50 V.

Fig. S3. *J-V* characteristic curves of PSCs built on BPQDs electron selective layer (ESL) with various BPQDs thickness (i.e. 0, 1, 3, 5, 7 layers).

Fig. S4. The *J-V* characteristic curves of rigid FTO/glass substrate based PSCs with a low-temperature produced BPQDs electron selective layer.

Fig. S5. The *J-V* characteristic curves of rigid FTO/glass substrate based PSCs with a high-temperature produced ($450 \,^{\circ}$ C) compact TiO₂ electron selective layer.

Fig. S6. SEM images of the electrodes with various layers (i.e. 0, 1, 5, 7) of BPQDs deposited on ITO surface.

Fig. S7. 3D AFM images of the electrodes with various layers (i.e. 0, 1, 5, 7) of BPQDs deposited on ITO surface.

Fig. S8 SEM images of mixed perovskite deposited on low-temperature produced TiO_2 electron selective layer (ESL). The TiO_2 ESL is prepared according to the reported work, Science 2014, 345, 542–546

Electrodes	Component 1			Component 2			(73)	
Electrodes	$\tau_1(ns)$	A_1	C1	τ_2 (ns)	A_2	<i>C</i> ₂	$-\tau_{ave}$ (IIS)	
Bare ITO/Perovskite	6.8	958	71.1%	198.2	389	28.9%	184.6	
BPQDs/Perovskite	4.3	1334	80.3%	27.6	327	19.7%	18.3	

Table S2. Time resolved photoluminescence characterization of the perovskiteelectrode built on bare ITO/PEN substrate and BPQDs coated ITO/PEN substrate. a

^{*a*}The data were obtained by fitting the TRPL spectra with a bi-exponential decay function of the following form:

$$R(t) = R_0 + A_1 \exp(-\frac{t}{\tau_1}) + A_2 \exp(-\frac{t}{\tau_2})$$

The average lifetime (τ_{ave}) and weight concentration (*c*) are calculated according to Equation 1 and Equation 2, respectively.

$$\mathcal{T}_{\text{ave}} = \sum_{i=1}^{n} \frac{A_{i} \mathcal{T}_{i}^{2}}{A_{i} \mathcal{T}_{i}} = \frac{A_{1} \mathcal{T}_{1}^{2} + A_{2} \mathcal{T}_{2}^{2}}{A_{1} \mathcal{T}_{1} + A_{2} \mathcal{T}_{2}}$$
(Equation 1)
$$c_{i} = \frac{A_{i}}{\sum_{i=1}^{n} A_{i}}$$
(Equation 2)

Fig. S9 The photovoltaic parameters variations of the BPQDs-based plastic PSCs as a function of bending cycles.

Fig. S10 The SEM images of the perovskite film deposited on BPQDs ESL, after 200 cycles of bending