Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Enstronic Supplementary Material (ESI) for Cournal of Materials Chemistry A. This journal is © The Royal Society Chemistry 2018

Supplementary Information

A universal strategy for the *in-situ* synthesis of TiO₂(B) nanosheets on pristine carbon materials for high-rate lithium storage

Long Pan,^a Zheng-Wei Zhou,^a Yi-Tao Liu*^b and Xu-Ming Xie*^a

^{*a*} Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

^b State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China

*E-mail: liu-yt03@mails.tsinghua.edu.cn; xxm-dce@mail.tsinghua.edu.cn

Fig. S1 Molecular structure of SDBS.

Fig. S2 XRD patterns of (a) PGNS and (b) PCNT.

Fig. S3 Raman spectra of (a) PGNS and (b) PCNT. For graphene and CNT, the D peak is considered as defect-induced Raman band, and the G peak is considered as defect-free (sp² C atoms) Raman band.¹ The intensity ratio ($r = I_D/I_G$) of the D band and G band usually represents the degree of defects in graphene and CNT.¹⁻³ The smaller the value of *r*, the fewer the defects. The *r* values of PGNS and PCNT are 0.25 and 0.29, respectively, which are dramatically lower than those of *r*-GO and *r*-CNT (generally, r > 1),¹ indicating the highly ordered structure of PGNS and PCNT. As a result, PGNS and PCNT have much better conductivity than *r*-GO and *r*-CNT.

Fig. S4 (a) SEM and (b) TEM images of $TiO_2(B)$ nanosheets. These $TiO_2(B)$ nanosheets were synthesized in the absence of PGNS or PCNT. It is clearly seen from TEM image that the lateral sizes of these $TiO_2(B)$ nanosheets are small (about several hundred nanometers).

Fig. S5 N₂ adsorption-desorption isotherms and pore size distributions of (a, b) TiO₂(B)@PGNS and (c, d) TiO₂(B)@PCNT nanohybrids. In both cases, typical type-IV hysteresis loops with large BET surface areas (336 m² g⁻¹ for TiO₂(B)@PGNS, 310 m² g⁻¹ for TiO₂(B)@PCNT) are observed, implying the presence of uniform channel-like mesopores (5.5 nm for TiO₂(B)@PGNS, and 6.8 nm for TiO₂(B)@PCNT).

Fig. S6 XRD pattern of $TiO_2(B)$ nanosheets.

Fig. S7 (a) and (b) Wide-scan survey, (c) and (d) C1s, and (e) and (f) Ti2p XPS spectra of $TiO_2(B)@PGNS$ and $TiO_2(B)@PCNT$ nanohybrids, respectively. It can be seen, in both cases, that small peaks of oxygen-containing groups can be detected and the C:O atomic ratios are extremely high (>14), implying that exceptionally high structural integrity of PGNS and PCNT are well reserved in the nanohybrids. Besides, the peaks assigned to $Ti2p_{1/2}$ and $Ti2p_{3/2}$ of $TiO_2(B)$ can also be clearly distinguished, indicating the successful assembly of $TiO_2(B)$ nanosheets on PGNS and PCNT.⁴

	Atomic percent (%)			T:O-(B)
	С	Ti	0	11O ₂ (B) wt%
TiO ₂ (B)@PG	32.47	22.06	45.46	81.1
ГіO ₂ (B)@PCNT	38.73	19.52	41.75	75.4

Table S1 $TiO_2(B)$ contents in $TiO_2(B)$ @PGNS and $TiO_2(B)$ @PCNT nanohybrids.

Fig. S8 XRD patterns of TiO₂(B)@PGNS nanohybrids anode before and after cycling.

Fig. S9 Repeated rate capability of TiO₂(B)@PGNS nanohybrids.

Fig. S10 Repeated rate capability of TiO₂(B)@PCNT nanohybrids.

Fig. S11 Dark field TEM image and the corresponding element maps of $TiO_2@PGNS$ nanohybrids after cycling.

Fig. S12 Nyquist plots of $TiO_2(B)$ nanosheets and $TiO_2(B)@PGNS$ nanohybrids.

References:

- 1 M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, *Nano Lett.*, 2010, **10**, 751–758.
- Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, *Nat. Nanotechnol.*, 2008, 3, 563–568.
- 3 L. Pan, X.-D. Zhu, X.-M. Xie and Y.-T. Liu, Adv. Funct. Mater., 2015, 25, 3341–3350.
- 4 H. Xu, X. D. Zhu, K. N. Sun, Y. T. Liu and X. M. Xie, *Adv. Mater. Interfaces*, 2015, **2**, 1500239.