Supplementary Information

## Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry

Zishuai Zhang<sup>1#</sup>, Xiaoqiao Hu<sup>1#</sup>, Yu Zhou<sup>1</sup>, Shaofeng Wang<sup>1</sup>, Lingmin Yao<sup>2</sup>,Hui Pan<sup>3</sup>,Chin-yuan Su<sup>4</sup>, Fuming Chen<sup>1\*</sup>, Xianhua Hou<sup>1\*</sup>

<sup>1</sup>Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006

<sup>2</sup> School of Physics and Electronic Engineering, Guangzhou University, 510006

<sup>3</sup> Institute of Applied Physics and Materials Engineering, University of Macau, E12

<sup>4</sup> Department of Mechanical Engineering, National Central University, Taiwan, 32001

# These authors contributed equally to this work

\*E-mail:fmchen@m.scnu.edu.cn; houxianhua@m.scnu.edu.cn

ORCID ID: <u>https://orcid.org/0000-0002-0108-9831</u>

## Supplementary Figures:



Supplementary Figures 1. CV curves of the 3 electrodes in aqueous 0.8 M NaF electrolyte, working electrode: NMO, counter electrode: platinum; reference electrode: standard saturated Ag/AgCl electrode.



Supplymentary Figure 2 (a-d) HRTEM imagines of the NMO cathode after discharge process.



Supplementary Figure 3 (a-d) the mapping images of NMO cathode after discharge process.

| 5 5                                                                 |                                                                  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Cell reaction                                                       | $xBiF_3 + 3Na_{0.44}MnO_2 \rightarrow xBi + 3Na_{0.44-x}MnO_2 +$ |  |  |
|                                                                     | $3xNaF$ ( $x_{max}=0.22$ )                                       |  |  |
| N [a]                                                               | 3                                                                |  |  |
| Specific capacity of BiF <sub>3</sub> (theoret.) Ah/kg [b]          | 302.3                                                            |  |  |
| Specific capacity of Na <sub>0.44</sub> MnO <sub>2</sub> (theoret.) | 60.7                                                             |  |  |
| Ah/kg [c]                                                           |                                                                  |  |  |
| Specific capacity of cell (theoret.) Ah/kg [d]                      | 50.5                                                             |  |  |

Supplementary Table 1 Battery and electrode parameters of BiF<sub>3</sub>-NMO aqueous fluoride ion battery system

[a] N is the electron transfer number of 1mole BiF<sub>3</sub> electrode reaction.

[b] The calculation of the specific capacity of the electrode material is based on the active BiF<sub>3</sub>.

[c] The calculation of the specific capacity is based on the active NMO.

[d] The calculation of the specific capacity is based on the active  $BiF_3$  and NMO.

| Cell type                                                                                             | Electrolyte                                                    | Capacity retention (%)                 | Initial<br>capacity<br>(mAhg <sup>-1</sup> ) | Ref.         |                                 |                                       |                                    |                         |     |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------------------------------|--------------|---------------------------------|---------------------------------------|------------------------------------|-------------------------|-----|
|                                                                                                       |                                                                |                                        |                                              |              | Aqueous rechargeable lithium io | on batteries                          |                                    |                         |     |
|                                                                                                       |                                                                |                                        |                                              |              | MnO <sub>2</sub> //Li           | 1.0 M Li <sub>2</sub> SO <sub>4</sub> | 85% (2400) at 50 mAg <sup>-1</sup> | 170 Wh kg <sup>-1</sup> | [1] |
| LiMn <sub>2</sub> O <sub>4</sub> //Li                                                                 | $0.5 \text{ M Li}_2 \text{SO}_4$                               | ~100% (30) at 100 mAg <sup>-</sup>     | 115 mAhg <sup>-1</sup>                       | [2]          |                                 |                                       |                                    |                         |     |
| LiCoO <sub>2</sub> //Li                                                                               | 0.5 M Li <sub>2</sub> SO <sub>4</sub>                          | N.A.                                   | ~465 Wh kg <sup>-1</sup>                     | [3]          |                                 |                                       |                                    |                         |     |
| LiFePO4@C//LiV3O8                                                                                     | 9 M LiNO <sub>3</sub>                                          | ~91.8% (100) at 10 C                   | 90                                           | [4]          |                                 |                                       |                                    |                         |     |
| Aqueous rechargeable sodium a                                                                         | nd potassium ion batte                                         | eries                                  |                                              |              |                                 |                                       |                                    |                         |     |
| Na <sub>2</sub> FeP <sub>2</sub> O <sub>7</sub> //NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub>   | 1.0 M Na <sub>2</sub> SO <sub>4</sub>                          | 2.0 mAcm <sup>-1</sup>                 | ~45                                          | [5]          |                                 |                                       |                                    |                         |     |
| Na <sub>3</sub> MnTi(PO <sub>4</sub> ) <sub>3</sub> //Na <sub>3</sub> MnTi(PO <sub>4</sub> )          | 1.0 M Na <sub>2</sub> SO <sub>4</sub>                          | 98% (100) at 1 C                       | 56.5                                         | [6]          |                                 |                                       |                                    |                         |     |
| 3                                                                                                     |                                                                |                                        |                                              |              |                                 |                                       |                                    |                         |     |
| Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> //NaTi <sub>2</sub> (PO <sub>4)3</sub> | 1.0 M Na <sub>2</sub> SO <sub>4</sub>                          | 50%(50) at 10 Ag <sup>-1</sup>         | 58                                           | [7]          |                                 |                                       |                                    |                         |     |
| Aqueous rechargeable multivale                                                                        | ent metal ion batteries                                        |                                        |                                              |              |                                 |                                       |                                    |                         |     |
| Todorokite MnO <sub>2</sub> //Zn                                                                      | 1.0 M ZnSO <sub>4</sub>                                        | Stable up to 50 cycles                 | 98                                           | [8]          |                                 |                                       |                                    |                         |     |
| $\alpha$ -MnO <sub>2</sub> //Zn                                                                       | 1.0 M ZnSO <sub>4</sub>                                        | ~100%(100) at 6C                       | ~100                                         | [9]          |                                 |                                       |                                    |                         |     |
| ZnMn <sub>2</sub> O <sub>4</sub> @C//Zn                                                               | 3.0 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>        | 94%(500) at 500 mAg <sup>-1</sup>      | 85                                           | [10]         |                                 |                                       |                                    |                         |     |
| Aqueous rechargeable hybrid ba                                                                        | atteries                                                       |                                        |                                              |              |                                 |                                       |                                    |                         |     |
| NaFe-PB//Zn                                                                                           | 1.0 M Na <sub>2</sub> SO <sub>4</sub>                          | 80% (1000) at<br>300 mAg <sup>-1</sup> | 74.0                                         | [11]         |                                 |                                       |                                    |                         |     |
| Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> -C//Zn                                 | 0.5M<br>CH <sub>3</sub> COONa+0.5 M<br>Zn(CH <sub>2</sub> COO) | 77% (200) aNt 0.5 C                    | 91                                           | [12]         |                                 |                                       |                                    |                         |     |
| NMO-BiF <sub>3</sub>                                                                                  | 0.8 M NaF                                                      | 62.8% (10) at 100 mAg <sup>-</sup>     | 123.4                                        | this<br>work |                                 |                                       |                                    |                         |     |

Supplementary table 2 comparison of BiF<sub>3</sub>-NMO and various aqueous rechargeable batteries

Reference:

[1] S.L. Chou, Y.X. Wang, J.T. Xu, J.Z. Wang, H.K. Liu, S.X. Dou, Electrochem. Commun. 31 (2013) 35e38

[2] X.J. Wang, Y.Y. Hou, Y.S. Zhu, Y.P. Wu, R. Holze, Sci. Rep. 3 (2013) 1401.

[3] X. Wang, Q. Qu, Y. Hou, F. Wang, Y. Wu, Chem. Commun. 49 (2013) 6179e6181.

[4] M.S. Zhao, G.L. Huang, W.G. Zhang, H.Y. Zhang, X.P. Song, Energy & Fuels 27 (2013) 1162e1167.

[5] K. Nakamoto, Y. Kano, A. Kitajou, S. Okada, J. Power Sources 327 (2016) 327e332.

[6] H. Gao, J.B. Goodenough, Angew. Chemie-International Ed. 55 (2016) 12768e12772.

[7] Q. Zhang, C. Liao, T. Zhai, H. Li, Electrochim. Acta 196 (2016) 470e478.

[8] J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Electrochim. Acta 112 (2013) 138e143.

[9] C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 51 (2012) 933e935

[10] N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 138 (2016) 12894e12901.

[11] L.P. Wang, P.F. Wang, T.S. Wang, Y.X. Yin, Y.G. Guo, C.R. Wang, J. Power Sources 355 (2017) 18e22.

[12] G.L. Li, Z. Yang, Y. Jiang, W.X. Zhang, Y.H. Huang, J. Power Sources 308 (2016) 52e57.