Supporting Information

Improved cycling stability of NiS_{2} cathode through designing

"kiwano" hollow structure

Yaru Zhang, ${ }^{\text {a }}$ Fei Lu, ${ }^{\text {a }}$ Pan Lu, ${ }^{\text {a }}$ Yong Xu, ${ }^{\text {b }}$ Yijun Yang, ${ }^{a}$ Yoshio Bando, ${ }^{\text {b,c }}$
Dmitri Golberg, ${ }^{\text {c,e }}$ Jiannian Yao ${ }^{\text {b,d }}$ and Xi Wang ${ }^{\text {a,b,* }}$
${ }^{a}$ Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China

E-mail: xiwang@bjtu.edu.cn
${ }^{\text {b }}$ School of Chemical Engineering and Technology, Tianjin University; Institute of Molecular Plus, Tianjin University; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
© International Center for Young Scientists (ICYS) \& International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
${ }^{d}$ Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
${ }^{e}$ Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia

Fig. S1 XRD patterns of NiS_{2} samples at $170^{\circ} \mathrm{C}$ with the different reaction time: (a) 3 h and (b) 6 h . (c) XRD pattern of a phase-converted NiS from the initial NiS_{2} after long cycles.

Fig. S2 (a-b) XPS profiles of Ni $2 p$ and S 2 p for NiS_{2}.

Fig. S3 (a-c) HRTEM images of the NiS_{2} hollow spheres.

Fig. $\mathrm{S4}$ (a) CV curves of a NiS_{2} electrode in the voltage window of $1.0-3.0 \mathrm{~V}$ at a scan rate of $0.1 \mathrm{mV} / \mathrm{s}, 0.4 \mathrm{mV} / \mathrm{s}$ and $0.8 \mathrm{mV} / \mathrm{s}$ after long cycles. (b) The galvanostatic charge/discharge profiles of a NiS_{2} electrode in the voltage window of 1.0-3.0 V at 50 mA / g.

Fig. S5 The SEM images and the galvanostatic charge/discharge profiles of NiS_{2} samples prepared at $170^{\circ} \mathrm{C}$ with the different reaction time: (a-b) 3 h and (c-d) 6 h .

Fig. S6 (a) SEM image of the NiS_{2} hollow spheres before cycles. (b-d) SEM images of a NiS_{2} electrode material after 10,50, 100 cycles.

Fig. S7 HRTEM image of the NiS_{2} surface after first lithiation.

Fig. $\mathbf{S 8}$ HRTEM images of the different lithiated NiS_{2} particles after the first lithiation for 300 s as observed via in situ TEM.

Notes and references

1. Q. N. Chen, W. X. Chen, J. B. Ye, Z. Wang and J. Y. Lee, J. Power Sources, 2015, 294, 51-58
2. K. Liang, K. Marcus, S. Zhang, L. Zhou, Y. Li, S. T. De Oliveira, N. Orlovskaya, Y.-H. Sohn and Y. Yang, Adv. Energy Mater., 2017, 7, 1701309.
3. G. J. An, C. G. Liu, Y. D. Hou, X. L. Zhang and Y. Q. Liu, Mater. Lett., 2008, 62, 26432646.
4. X. Wang, Q. H. Weng, X. Z. Liu, X. B. Wang, D. M. Tang, W. Tian, C. Zhang, W. Yi, D. Q. Liu, Y. Bando and D. Golberg, Nano Lett., 2014, 14, 1164-1171.
5.Y. Yang, D.-M. Tang, C. Zhang, Y. Zhang, Q. Liang, S. Chen, Q. Weng, M. Zhou, Y. Xue, J. Liu, J. Wu, Q. H. Cui, C. Lian, G. Hou, F. Yuan, Y. Bando, D. Golberg and X. Wang, Energy Environ. Sci., 2017, 10, 979-986.
5. J. H. Wang, Z. Cheng, J. L. Bredas and M. L. Liu, J. Chem. Phys., 2007, 127, 8.
