SiOC Nanolayers Wrapped 3D Interconnected Graphene Sponge as High-Performance Anodes for Lithium Ion Batteries

Zhiyuan Sang^a, Zhihao Zhao^a, Dong Su^{a*}, Peishuang Miao^a, Fengrui Zhang^a,

Huiming Jia*, Xiao Yanb

« Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of

Education, School of Materials Science and Engineering, Tianjin University, Tianjin

300350, P.R. China

^b Guangdong Key Laboratory of Membrane Materials and Membrane Separation,

Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences,

Guangzhou 511452, China

^{*}Corresponding author: Dong Su (E-mail: <u>sudong@tju.edu.cn</u>, Tel: 0086-13920782557) *Corresponding author: Huiming Ji (E-mail: <u>jihuiming@tju.edu.cn</u>, Tel: 13642050311)

Fig. S1 Ultra-light , high-strength and compressibility of the 3D-GNS

Fig. S2 Fourier transform infrared (FTIR) spectrum of the 3D-GNS, PSO and 3D-PSO/GNS.

1. C-H 2. Si-H 3.C=C 4. Si-CH₃/O-H 5. Si-CH₃/C-OH 6. C-O/C-O-C 7. Si-O 8-9. Si-C

Fig. S3 TG analysis of the SiOC and 3D-GNS/SiOC-5.

Thermogravity analysis (TGA, Netzsch STA 449F3, Germany) was carried with a heating rate of 10°C/min under air to determined the ratio of GNS in the nanocomposites.

Fig. S4 SEM morphologies of 3D-GNS/SiOC with different content of GNS: (a) 3D-GNS/SiOC-L (1wt.%-GNS) (b) 3D-GNS/SiOC (5wt.%-GNS) (c) 3D-GNS/SiOC-H (10wt.%-GNS)

Fig. S5 SEM morphologies of (a) SiOC and (b) m-GNS/SiOC

Fig. S6 XPS survey spectrums of SiOC and 3D-GNS/SiOC.

Fig. S7 High-resolution XPS spectra of O1s of SiOC and 3D-GNS/SiOC.

Fig. S8 Electrochemical performances:(a) discharge/charge profiles of p-SiOC, m-GNS/SiOC and 3D-GNS/SiOC at 0.1 A/g (b) the cycling performance of SiOC, m-GNS/SiOC at 0.1 A/g. (c) the rate and cycling performance of 3D-GNS.

Fig. S9 The electrochemical performance of 3D-GNS/SiOC, 3D-GNS/SiOC-L and 3D-GNS/SiOC-H: (a) the rate performance (b) the EIS plots.

Fig. S10 The cycling performance of 3D-GNS/SiOC-2 and 3D-GNS/SiOC-7 at 0.5A g⁻¹ (3D-GNS/SiOC-X, where X shows the percent of GNS loading about 2wt.% and 7wt.%, respectively).

Sample	Binding Energy (eV)	Assignment	Atom%
P-SiOC	101.2	SiOC ₃	16.88
	102.1	SiO_2C_2	35.12
	103.0	SiO ₃ C	33.44
	104.2	SiO_4	14.56
3D-GNS/SiOC	101.4	SiOC ₃	13.53
	102.0	SiO_2C_2	28.25
	103.1	SiO ₃ C	37.82
	104.4	SiO_4	20.40

Table S1. Peak assignment of Si2p of SiOC and 3D-GNS/SiOC

Table S2. Peak assignment of C1s and O1s of SiOC and 3D-GNS/SiOC, respectively

Sample	Element	Binding Energy (eV)	Assignment	Atom%
P-SiOC		284.6	sp ² /sp ³ C-C	77.05
	C 1s	286.5	C-O	6.13
		283.7	C-Si	16.82
	01	532.5	Si-O	93.08
	OIS	534.2	Si-O-Si	6.92
3D-GNS/SiOC		284.6	sp ² /sp ³ C-C	80.88
	C 1s	286.4	C-O	14.38
		283.8	C-Si	4.74
	O1c	532.5	Si-O	84.10
	018	534.1	Si-O-Si	15.90

Parameter	SiOC	m-GNS/SiOC	3D-GNS/SiOC
R_o/Ω	9.397	4.864	3.069
R_{ct}/Ω	161.4	81.76	44.7
CPE-T/µF	14.329	29.1	31.45
Ws-R/Ω	25554	22609	8991

Table S3. EIS fitting results of SiOC, m-GNS/SiOC and 3D-GNS/SiOC anode

Table S4. Comparison of electrochemical properties of the 3D-GNS/SiOC composites with other Si-O-C anode materials for LIBs

Samplas	Current density	Cycles	Capacity	Ref./Year
Samples	Current density		(mAh g ⁻¹)	
C-rich SiOC	74 mA g ⁻¹	30	460	20161
HF-etched SiOC	200 mA g ⁻¹	100	572	2016 ²
SiOC aerogel	360 mA g ⁻¹	50	600	2015 ³
SiOC/C fiber	50 mA g ⁻¹	60	669	20144
SiOC/BN nanotubes	100 mA g ⁻¹	25	450	2017 ⁵
SiOC-CNT Shell/Core	100 mA g ⁻¹	40	686.3	20136
Intercalated SiOC/GNS	50 mA g ⁻¹	90	582	20157
Layered SiOC/GNS	40 mA g ⁻¹	20	357	20098
SiOC/GNS Paper	100 mA g ⁻¹	1020	588	20169
SiOC/GNS Paper	100 mA g ⁻¹	30	400	201610
SiOx-C/GNS	100 mA g ⁻¹	250	630	201511
3D SiO ₂ @Graphene Aerogel	500 mA g ⁻¹	300	300	2015 ¹²
3D- GNS/SiOC	500 mA g ⁻¹	200	586.6	This work
	100 mA g ⁻¹	100	701.5	This work

Reference

- 1. J. Kaspar, M. Graczyk-Zajac, S. Choudhury and R. Riedel, *Electrochim. Acta*, 2016, **216**, 196-202
- M. Ma, H. Wang, M. Niu, L. Su, X. Fan, J. Deng, Y. Zhang and X. Du, *RSC Adv.*, 2016, 6, 43316-43321.
- 3. V. S. Pradeep, D. G. Ayana, M. Graczyk-Zajac, G. D. Soraru and R. Riedel, *Electrochim. Acta*, 2015, **157**, 41-45
- 4. Li, Y.; Hu, Y.; Lu, Y.; Zhang, S.; Xu, G.; Fu, K.; Li, S.; Chen, C.; Zhou, L.; Xia, X.; Zhang, X. *J. Power Sources*, **2014**, 254, 33-38.
- 5. Abass, M. A., Syed, A. A., Gervais, C., & Singh, G, *Rsc Adv.*, 2017, 7, 21576-21584.
- 6. R. Bhandavat and G. Singh, J. Phys. Chem. C, 2013, **117**, 11899-11905.
- 7. Y. Ren, B. Yang, X. Huang, F. Chu, J. Qiu and J. Ding, *Solid State Ionics*, 2015, **278**, 198-202
- F. Ji, Y. L. Li, J. M. Feng, D. Su, Y. Y. Wen, Y. Feng and F. Hou, *J. Mater. Chem.*, 2009, 19, 9063-9067.
- 9. L. David, R. Bhandavat, U. Barrera and G. Singh, *Nat. Commun.*, 2016, 7, 10998.
- 10. L. David, K. M. Shareef, M. A. Abass and G. Singh, *Rsc Adv.*, 2016, **6**, 53894-53902.
- 11. M. Q. Li, Y. Yu, J. Li, B. L. Chen, A. Konarov and P.Chen, J. *Power Sources*, 2015, **293**, 976-982.
- 12. J. Meng, Y. Cao, Y. Suo, Y. Liu, J. Zhang and X. Zheng, *Electrochim. Acta*, 2015, **176**, 1001-1009.