Supplementary information

Synthesis of porous carbon from cotton using Mg(OH)₂ template for formstabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability

Dimberu G. Atinafu^a, Wenjun Dong^{*a}, Chen Wang^a and Ge Wang^{*a}

^aBeijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.

*Corresponding Authors: E-mail: wdong@ustb.edu.cn. (W. Dong) and gewang@mater.ustb.edu.cn (G. Wang); Tel: +86-10-62333765

Fig. S1. XRD patterns of dewaxed cotton with and without template before carbonization.

Fig. S2. SEM image of carbon prepared without template at 800 °C.

Fig. S3 High-resolution TEM image of PC12. Inset shows the TEM image with different magnification.

Samples	BET surface area (m ² /g)				Pore volume (cm ³ /g)			
Sumples .	Micropore	Mesopore	Total	Ratio ^a	 Micropore	Mesopore	Total	
PC7	229.2	258.7	487.9	0.53	0.14	1.08	1.22	
PC8	419.0	298.7	717.7	0.42	0.18	1.40	1.58	
PC9	571.8	304.8	876.6	0.34	0.30	1.53	1.83	
PC12	301.5	286.2	587.7	0.48	0.16	1.24	1.40	

Table S3. Textural characteristics of as-prepared carbon materials.

^{*a*}Ratio of mesopore area to total area.

Fig. S4 XRD patterns of pristine PCM and as-prepared composite PCM with different wt% of PCM.

Table S2. Thermal	properties of	pure PCM and as-sv	ynthesized form-stabilized	l composite PCMs.
-------------------	---------------	--------------------	----------------------------	-------------------

Samples	T _m (°C)	ΔH _m (kJ/kg)	ΛΗ ^{exp} (k1/kσ)	T _c (°C)		۸Hc (kl/kg)
				α	β	
PCM	51.4	222.8	222.8	40.4	34.9	210.3
Pc7-80	49.3	168.9	178.2	41.2	34	160.6
Pc7-85	50.4	204.4	189.4	40.6	33.6	194.2
Pc8-80	49.3	177.1	178.2	41.1	33.3	167.9
PC8-85	50.3	214.5	189.4	40.7	33.2	194.9
Pc8-90	50.8	219.4	200.5	40.4	33.2	204.6
Pc9-80	49.8	191.0	178.2	41.1	33.9	178.2
Pc9-85	50.6	198.8	189.4	40.2	33.3	186.6
PC9-88	51.2	215.5	196.1	40.2	33.2	196.0

Fig. S5. Thermal conductivity of pure PCM and as-prepared composite PCMs.

Fig. S6. TG analysis thermograms of as-prepared composite PCMs with 85 wt% of PCM loading.