Facile template-free synthesis of uniform carbon-confined V₂O₃

hollow microspheres for stable and fast lithium storage

Chunhua Han*, Fang Liu, Jinshuai Liu, Qi Li, Jiashen Meng, Bowen Shao, Qiu He, Xuanpeng Wang, Ziang

Liu, Liqiang Mai*

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

*Email - mlq518@whut.edu.cn, mlq518@163.com

Experimental

Synthesis of uniform V2O3@NC hollow microspheres

All the reagents are of analytical grade and used as-received without further purification. First, 0.5 g of vanadium acetylacetonate and 1 g of 2-dimethylimidazole were successively dissolved in 40 mL of N, N-dimethylformamide (DMF) solvent under stirring. The resulting mixture was stirred for another 1 h at room temperature. The obtained solution was transferred to a 50 mL Teflon autoclave and then heated to 160 °C for 12 h. Then, the V-2-MIM complex precursor hollow microspheres were collected, washed with ethyl alcohol three times and dried under vacuum at 60 °C for 12 h. Subsequently, after sintered at 500 °C for 3 h in argon, uniform $V_2O_3@NC$ hollow microspheres were obtained.

Characterizations

The crystallographic characteristics of the final products were measured using a Bruker D8 Discover X-ray diffractometer equipped with a Cu K α radiation source. Scanning electron microscopy (SEM) images were collected by a JEOL JSM-7100F at an acceleration voltage of 15 kV. TEM images were collected using a JEM-2100F transmission electron microscope. Energy-dispersive X-ray spectra were recorded using an Oxford IE250 system. Raman and FTIR spectra were obtained using a Renishaw INVIA micro-Raman spectroscopy system. X-ray photoelectron spectroscopy (XPS) measurements were conducted using a VG MultiLab 2000 instrument. The Brunauer-Emmett-Teller (BET) surface areas and pore size distribution were measured using Tristar II 3020 instrument by nitrogen adsorption at 77 K. TG-DSC analysis was conducted using an STA-449F3 instrument. ICP-AES analysis was conducted using a Prodigy 7 instrument.

Electrochemical measurements

The working electrode slurry was composed of 70 wt% V_2O_3 @NC hollow microspheres, 20 wt% acetylene black, 10 wt% polyvinylidene fluorides (PVDF) and N-methyl-2-pyrrolidinone (NMP). After coating onto copper foil, the electrode film was uniformly cut into~0.5 cm² (area) round slices, weighing a total of ~ 1.0 mg; the corresponding areal mass loading was 2 mg cm⁻². Cell assembly was carried out in an argon-filled glove box with the concentrations of moisture and oxygen below 0.1 ppm. Lithium foil was used as the counter electrode and the separator was Celgard 2400 microporous membrane. 1 M lithium hexafluorophosphate (LiPF₆) solution in ethylene carbon (EC)-dimethyl carbonate (DMC) (1:1 v/v) was used as the electrolyte. Galvanostatic charge/discharge measurements were performed using a multichannel battery testing system (LAND CT2001A). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed with a CHI 600e electrochemical workstation and Auto lab PGSTAT 302N.

Fig. S1 Schematic illustration of single V₂O₃@NC hollow microsphere with efficient electron and Li⁺ transport.

Fig. S2 Characterizations of the V-2-MIM complex solid microspheres. (a) SEM image. (b, c) TEM images. (d-h) SEM image and the corresponding EDS mapping images.

Fig. S3 Characterizations of the V-2-MIM complex yolk-shell microspheres. (a) SEM image. (b, c) TEM images. (d-h)

SEM image and the corresponding EDS mapping images.

Fig. S4 Diameter distribution of amorphous V-2-MIM complex hollow spheres.

Fig. S5 (a, b) BET and BJH curves of the V-2-MIM complex hollow microspheres.

Fig. S6 (a, b) TG and DSC curves of the V-2-MIM complex hollow microspheres tested in argon and air conditions,

respectively.

Fig. S7 Elemental content of amorphous V-2-MIM complex hollow spheres, obtained from XPS and ICP-AES

measurements.

Fig. S8 Morphology characterizations of uniform V₂O₃@NC hollow microspheres. (a) SEM image. (b, c) TEM images.

(d) HRTEM image.

Fig. S9 Structure characterizations of uniform V₂O₃@NC hollow microspheres. (a) BET curve. (b) BJH curve. (c) Raman spectrum. (d) TG and DSC curves.

The reaction equations of V₂O₃@NC hollow spheres during the heat treatment at are as follows:

 V_2O_3 (solid) + O_2 (gas) $\rightarrow V_2O_5$ (solid)

NC (solid) + $(1+x/2)O_2$ (gas) $\rightarrow CO_2$ (gas) + NO_x (gas)

Fig. S10 (a) Cycling performance of $V_2O_3@NC$ hollow microspheres at a current density of 100 mA g⁻¹. (b) The Nyquist plots of $V_2O_3@NC$ hollow microspheres at different cycles.

Fig. S11 Lithium storage kinetic analyses of uniform $V_2O_3@NC$ hollow microspheres. (a) CV curves at different scan rates. (b, c) Separation of the capacitive and diffusion currents at scan rates of 0.6 and 4 mV s⁻¹, respectively. (d) Contribution ratio of the capacitive and diffusion-controlled charge versus scan rate.

Fig. S12 SEM images (a, b) and TEM images (c, d) of uniform $V_2O_3@NC$ hollow microspheres after 50 cycles at 200 mA g⁻¹.

Morphology	Voltage range (V)	Current density	Cycle number	Residual capacity	Capacity retention	Reference
		(mA g ⁻¹)		(mAh g ⁻¹)		
$V_2O_3@NC$ hollow	0.01-3	200	120	811	108%	Our work
microspheres		2000	700	472	123%	
Coherent porous						
V_2O_3 /carbon	0.01-3	100	200	587	65.9%	Ref. 30
nanocomposites						
V_2O_3 /carbon nano-felts	0.01-3	200	100	420	101%	Ref. 31
Carbon-coated yolk-						
shell V ₂ O ₃	0.01-3	100	100	437.5	92.5%	Ref. 32
microspheres						
Carbon-supported V_2O_3	0.01-3	200	600	505	194%	Ref. 33
microspheres		2000	7000	250	100%	
V_2O_3 -ordered						
mesoporous carbon	0.02-3	100	180	536	78.2%	Ref. 35
composites						
Reduced graphene	0.01-3	100	50	380	81.8%	Ref. 36
oxide modified V_2O_3		500	250	270	84.3%	

Table S1. A comparison of our work and previous reports on different carbon-based V_2O_3 nanostructures for LIBs.