Supplementary Information

Efficient synthesis of aluminosilicate RTH zeolite with good catalytic performances in NH₃-SCR and MTO reactions

Hao Xu,^a Qinming Wu,^{*,a} Yueying Chu,^b Jingang Jiang,^c Ling Zhang,^a Shuxiang Pan,^a Changsheng Zhang,^a Longfeng Zhu,^{a,d} Feng Deng,^b Xiangju Meng,^a Stefan Maurer,^e Robert McGuire,^f Andrei-Nicolae Parvulescu,^f Ulrich Müller ^f and Feng-Shou Xiao^{*,a}

^{*a*} Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China.

^b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China.

^c Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

^{*d*} College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.

^e BASF Catalysts (Shanghai) Co., Ltd., 239 Luqiao Road, Jinqiao Export Process Zone Pudong New District, Shanghai, 201206, China.

^f BASF SE, GCC/PZ -M311, 67056 Ludwigshafen, Germany.

Supplementary Figure Captions

Figure S1 TG-DTA curves of as-synthesized RTH zeolite in the presence of 2,6-methyl-N-methylpyridinium.

Figure S2 (A) XRD patterns and (B) SEM images of RTH zeolite synthesized at (a) 150 °C for 7 h, (b) 180 °C for 3 h and (c) 240 °C for 50 min, respectively.

Figure S3 DRIFT spectra of H-RTH zeolites synthesized at (a) 130 °C, (b) 180 °C and (c) 240 °C, respectively.

Figure S4 (A) XRD patterns and (B) SEM images of zeolite RTH crystallized at 130 °C for (a) 3, (b) 6, (c) 9, (d) 10, (e) 11, (f) 12, (g) 288, and (h) 432 h, respectively.

*: peaks of Y zeolite, \blacklozenge : peaks of RTH zeolite.

Figure S5 Dependences of the RTH zeolite crystallinity on crystallization time using 1,2,3-trimethylimidazolium cation as organic template at (a) 180 °C, (b) 165 °C, (c) 150 °C, and (d) 130 °C, respectively.

Figure S6 XRD patterns of (a) as-synthesized RTH zeolite, and RTH zeolites calcined at (b) 550 °C, (c) 700 °C and (d) 850 °C, respectively.

Figure S7 (A) ²⁹Si and (B) ²⁷Al MAS NMR spectra of H-RTH zeolites calcined at (a) 550 °C, (b) 700 °C and (c) 850 °C, respectively.

Figure S8 NH₃-TPD curves of the H-RTH zeolites calcined at (a) 550 °C, (b) 700 °C and (c) 850 °C, respectively.

Figure S9 (a) Methanol conversion (\blacklozenge) and product selectivities of (b) ethylene with propylene ($\blacktriangle C_2H_4 + C_3H_6$), (c) ethylene ($\blacksquare C_2H_4$), (d) propylene ($\blacklozenge C_3H_6$), and (e)

hydrocarbons higher than C_4 ($\mathbf{\nabla} \ge C_4$) in MTO over (A) H-RTH catalyst (temperature at 400 °C and WHSV at 1.0 h⁻¹), (B) H-RTH catalyst (temperature at 480 °C and WHSV at 2.0 h⁻¹), (C) H-ZSM-5 catalyst (temperature at 400 °C and WHSV at 1.0 h⁻¹), and (D) H-ZSM-5 catalyst (temperature at 480 °C and WHSV at 2.0 h⁻¹).

Table S1 BET surface area and micropore volume of H-RTH zeolite samples with

 different crystallization temperature and calcination temperature.

Figure S1 TG-DTA curves of as-synthesized RTH zeolite in the presence of 2,6-methyl-N-methylpyridinium.

Figure S2 (A) XRD patterns and (B) SEM images of RTH zeolite synthesized at (a) 150 °C for 7 h, (b) 180 °C for 3 h and (c) 240 °C for 50 min, respectively.

Figure S3 DRIFT spectra of H-RTH zeolites synthesized at (a) 130 $^{\circ}$ C, (b) 180 $^{\circ}$ C and (c) 240 $^{\circ}$ C, respectively.

Figure S4 (A) XRD patterns and (B) SEM images of zeolite RTH crystallized at 130
°C for (a) 3, (b) 6, (c) 9, (d) 10, (e) 11, (f) 12, (g) 288, and (h) 432 h, respectively.
*: peaks of Y zeolite, ◆: peaks of RTH zeolite.

Figure S5 Dependences of the RTH zeolite crystallinity on crystallization time using 1,2,3-trimethylimidazolium cation as organic template at (a) 180 °C, (b) 165 °C, (c) 150 °C, and (d) 130 °C, respectively.

Figure S6 XRD patterns of (a) as-synthesized RTH zeolite, and RTH zeolites calcined at (b) 550 °C, (c) 700 °C and (d) 850 °C, respectively.

Figure S7 (A) ²⁹Si and (B) ²⁷Al MAS NMR spectra of H-RTH zeolites calcined at (a) 550 °C, (b) 700 °C and (c) 850 °C, respectively.

Figure S8 NH₃-TPD curves of the H-RTH zeolites calcined at (a) 550 °C, (b) 700 °C and (c) 850 °C, respectively.

Figure S9 (a) Methanol conversion (\blacklozenge) and product selectivities of (b) ethylene with propylene ($\blacktriangle C_2H_4 + C_3H_6$), (c) ethylene ($\blacksquare C_2H_4$), (d) propylene ($\bullet C_3H_6$), and (e) hydrocarbons higher than C_4 ($\blacktriangledown \ge C_4$) in MTO over (A) H-RTH catalyst (temperature at 400 °C and WHSV at 1.0 h⁻¹), (B) H-RTH catalyst (temperature at 480 °C and WHSV at 2.0 h⁻¹), (C) H-ZSM-5 catalyst (temperature at 400 °C and WHSV at 1.0 h⁻¹), and (D) H-ZSM-5 catalyst (temperature at 480 °C and WHSV at 2.0 h⁻¹).

Table S1. BET surface area and micropore volume of H-RTH zeolite samples with

 different crystallization temperature and calcination temperature.

Run	Crystallization	Calcination	BET surface area	Micropore volume
	temperature (°C)	temperature (°C)	(m^{2}/g)	(cm^{3}/g)
1	130	550	576	0.26
2	180	550	583	0.28
3	240	550	559	0.24
4	130	700	558	0.26
5	130	850	427	0.20