Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Synthesis of MoS₂ from [Mo₃S₇(S₂CNEt₂)₃]I for Enhancing Photoelectrochemical Performance and Stability of Cu₂O Photocathode Toward Efficient Solar Water Splitting

Pravin S. Shinde ^{ab} Patricia R. Fontenot, ^c James P. Donahue, ^c Joseph L. Waters, ^{bd} Patrick Kung, ^{bd} Louis E. McNamara, ^e Nathan I. Hammer, ^e Arunava Gupta, ^{abf} and Shanlin Pan *, ^{ab}

^a Department of Chemistry, ^bCenter for Materials for Information Technology, ^dDepartment of

Chemical and Biological Engineering, fDepartment of Electrical and Computer Engineering, The

University of Alabama, Tuscaloosa, Alabama 35487, United States

^c Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States

^e Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38655, United States

* Corresponding Author:

E-mail: <u>span1@ua.edu</u>

Table of Contents

Cyclic voltammetry (CV) study of MoS ₂ precursors III
Fig. S1. CV of ferrocene in DMF and description III
Fig. S2. CVs of $[Mo_3S_7(S_2CNEt_2)_3]I$, $[Mo_3S_7(S_2CNMe_2)_3]I$, and $[NH_4]_2[Mo_3S_{13}]$ precursors in
anhydrous DMF IV
Fig. S3. Polarization curves of MoS ₂ on GCE at different rpms; Koutecky–Levich plots V
Fig. S4. Polarization curves of MoS ₂ /FTO electrodes fabricated at 450°C VI
Fig. S5. CVs of bare FTO, as-grown MoS ₂ and N ₂ -annealed MoS ₂ electrodes from freshly
prepared and N2-saturated Na2SO4 VI
Fig. S6. CVs of bare FTO, as-grown MoS ₂ , and N ₂ -annealed MoS ₂ electrodes from a freshly-
prepared and N2-saturated Na2SO4 electrolytes recorded at different scan rates VII
Fig. S7. CVs of Pt disc electrode for ORR from N2-saturated, freshly-prepared and O2-saturated
Na ₂ SO ₄ electrolytes recorded at different scan rates VIII
Fig. S8. EDS analysis of Cu ₂ O and MoS ₂ /Cu ₂ O samples IX
Fig. S9. Cross-sectional SEM of MoS ₂ -modified Cu ₂ O and its EDS mapping IX
Fig. S10. SEM images of N ₂ -annealed MoS ₂ and N ₂ -annealed Cu ₂ O on FTO X
Fig. S11. Photocurrent responses of N2-annealed MoS2/Cu2O with different spin-coated layers
and N2-annealed Cu2O photocathodes XI
Fig. S12. XRD and SEM of N ₂ -annealed Cu ₂ O before and after PEC measurement XI
Fig. S13. Photocurrent responses of as-grown MoS _x -protected Cu ₂ O photocathode XII
Fig. S14. IPCE spectra of the Cu ₂ O and MoS ₂ /Cu ₂ O under backside illumination XII
Fig. S15. Long-term photostability tests of as-grown Cu ₂ O and N ₂ -annealed MoS ₂ -modified
Cu ₂ O photocathodes XII
Fig. S16. XRD of as-grown Cu ₂ O and MoS ₂ /Cu ₂ O photoelectrodes before and after long-term
stability tests XIII
Fig. S17. SEM images revealing surface morphology of as-grown Cu ₂ O and MoS ₂ /Cu ₂ O
photoelectrodes before and after long-term stability tests XIV
References XIV

Cyclic voltammetry study of MoS₂ precursors.

Prior to studying redox behaviour of MoS₂ precursors, the ferrocenium/ferrocene (Fc⁺/Fc) couple was used as an internal standard for calibration of the electrochemistry set-up. The cyclic voltammogram (Figure S1) of ferrocene in DMF reveals the occurrence of Fc⁺/Fc couple at +0.477 V vs. Ag/AgCl. The cyclic voltammograms of both [NH₄]₂[Mo₃S₁₃] and $[Mo_3S_7(S_2CNR_2)]^+I^-$ (R = Me or Et) in anhydrous N,N-dimethylformamide display strong similarity to one another (Figure S2). All of them show an irreversible feature at ~ -0.75 V vs. Ag/AgCl followed by a reversible reduction at approximately -1.32 V. The dithiocarbamate clusters show an additional irreversible wave upon scanning to ~-1.92 V, which is not apparent in the voltammogram of $[NH_4]_2[Mo_3S_{13}]$. None of the complexes supports any reversible process in the anodic direction. An electrochemical study of [NH₄]₂[Mo₃S₁₃] in CH₂Cl₂ by Garriga, Llusar and coworkers revealed reductions at -1.03 V and -1.27 V ([Cp₂Fe]⁺/[Cp₂Fe] at + 0.44 V) but no satisfactory explanation about the reversibility of these processes was provided.¹ The irreversibility observed for the first cathodic process may be attributed to transformation of bridging S_2^{2-} ligand to bridging monosulfide, S^{2-} , by extrusion of elemental sulphur from the equatorial positions. This interpretation is suggested by calculations showing the LUMO of $[Mo_3S_{13}]^{2-}$ to be predominantly a σ^* character between sulphur p orbitals of the bridging S_2^{2-} ligands.² The initial reductions observed for $[Mo_3S_7(S_2CNR_2)]^+I^-$ (R = Me or Et) are notably similar to that in $[Mo_3S_{13}]^{2-}$ both in approximate potentials and qualitative appearance. Thus, the essential basis for irreversibility is likely the same as in [Mo₃S₁₃]²⁻. The reversible following reductions found both in $[Mo_3S_{13}]^{2-}$ and $[Mo_3S_7(S_2CNR_2)]^+I^-$ (R = Me or Et) are tentatively assigned to reduction of the $[Mo_3S_4]^n$ core.

Figure S1. Cyclic voltammogram of ferrocene in DMF showing a ferrocenium/ferrocene couple at +0.477 V *vs*. Ag/AgCl.

Figure S2. Cyclic voltammograms of (A) $[Mo_3S_7(S_2CNEt_2)_3]I$, (B) $[Mo_3S_7(S_2CNMe_2)_3]I$, and (C) $[NH_4]_2[Mo_3S_{13}]$ in anhydrous DMF. Insets show their corresponding structures.

Figure S3. Polarization curves of MoS_2 recorded at (A) disc and (B) ring electrodes at different rotation speeds (viz. 500 to 5000 rpm). Insets show the Koutecky–Levich plots constructed at -0.36 V *vs*. RHE over the entire rotation frequency range at both disc and ring electrodes. Scan rate: 50 mV s⁻¹; Electrolyte: 0.5 M H₂SO₄.

Figure S4. Polarization curves of MoS_2/FTO electrodes fabricated at 450°C in nitrogen environment. Scan rate: 50 mV s⁻¹; Electrolyte: 0.5 M H₂SO₄.

Figure S5. Cyclic voltammograms of bare FTO, as-grown MoS₂ (air-dried for 1 min and 15 h), and N₂-annealed MoS₂ electrodes recorded at the scan rate of 50 mV s⁻¹ from (A) freshly prepared and (B) N₂-saturated 0.5 M Na₂SO₄ electrolytes.

Figure S6. Cyclic voltammograms showing catalytic activity for proton reduction by bare FTO (A, B), as-grown 1-min air-dried MoS_2 (C, D), as-grown 15-h air-dried MoS_2 (E, F), and N_2 -annealed MoS_2 (G, H) electrodes from a freshly-prepared and N_2 -saturated 0.5 M Na₂SO₄ electrolytes recorded at different scan rates (viz. 20, 50, 100, 200, 500, and 1000 mV s⁻¹).

Figure S7. Cyclic voltammograms showing catalytic ORR activity during proton reduction by Pt electrode from (A) 2 h N₂-saturated, (B) freshly-prepared (ambient), and (C) 2 h O₂-saturated 0.5 M Na₂SO₄ electrolytes recorded at different scan rates (viz. 20, 50, 100, 200, 500, and 1000 mV s⁻¹). (D) Overlay of cyclic voltammograms for possible ORR activity at the scan rate of 50 mV s⁻¹ for Pt electrode in 0.5 M Na₂SO₄ electrolyte with or without oxygen. CVs were also recorded with in-situ (live) purging of O₂ and N₂ gases at the flow rate of 30 mL cm⁻¹.

Figure S8. EDS spectra of Cu_2O and MoS_2/Cu_2O samples for elemental confirmation.

Figure S9. Cross-sectional SEM image (40,000X) of MoS_2 -modified Cu₂O revealing coverage of MoS_2 on Cu₂O. A drift in the mapped image is observed due to longer exposure time.

The surface coverage of MoS₂ (${n_{MoS_2}}$) on Cu₂O is estimated using a relation below:³ $n_{MoS_2} = \rho_{MoS_2} * N_A * t_{MoS_2} / MW_{MoS_2}$

where, ${\rho_{MoS_2}}$ is the density of MoS₂, N_A is the Avogadro's number, ${t_{MoS_2}}$ is the film thickness, ${}^{MW}{}_{MoS_2}$ is the molar mass of MoS₂.

 $n_{MoS_{2}}=(5.06~{\rm g~cm^{-3}}~*~6.023~\times~10^{23}~{\rm molecules}~{\rm mol^{-1}}~*~0.0000040~{\rm cm})$ / (160.07 g mol^-1)

= $7.6158 \times 10^{23} \times 10^{-7}$ molecules cm⁻² = $7.6158 \pm 0.6 \times 10^{16}$ molecules cm⁻²

Figure S10. SEM images of (A) N_2 -annealed MoS_2 and (B) N_2 -annealed Cu_2O on FTO substrate at lower and higher magnifications.

Figure S11. Photocurrent responses of (A) N₂-annealed MoS₂-protected Cu₂O photocathodes (prepared with different spin-coated layers; 1L, 2L, and 4L) and (B) N₂-annealed Cu₂O photocathode (3-segment measurement). Electrolyte: 0.5 M Na₂SO₄ solution (pH ~6.7); Light source: a 300 W Xe lamp; Illumination: simulated 1 sun (100 mW cm⁻²).

Figure S12. (A) Normalized X-ray diffraction patterns and (B) SEM images (showing porous surface morphology) of N₂-annealed Cu₂O photoelectrode before and after PEC measurement.

Figure S13. Photocurrent responses of as-grown MoS_x -protected Cu₂O photocathode (with 3L spin-coated MoS_x). Electrolyte: 0.5 M Na₂SO₄ with and without 0.1 M K₂HPO₄ solution; Light source: a 300 W Xe lamp; Illumination: simulated 1 sun (100 mW cm⁻²).

Figure S14. IPCE spectra of as-grown Cu₂O and MoS₂/Cu₂O photocathodes at ~0.2 V vs. RHE (-0.4 V vs. SCE) under backside illumination. Electrolyte: 0.5 M Na₂SO₄ solution (pH ~6.7).

Figure S15. Long-term photostability tests of as-grown Cu_2O and MoS_2 -modified Cu_2O photocathodes at an applied potential of 0 V vs. RHE in 0.1 M phosphate buffered (pH ~7) 0.5 M Na₂SO₄ electrolyte.

Figure S16. Normalized X-ray diffraction patterns of as-grown Cu₂O and MoS₂-modified Cu₂O photocathodes before and after the 1 h photostability tests.

Figure S17. SEM images of (A) as-grown Cu₂O and (B) MoS₂-modified Cu₂O photocathodes before and after the 1 h photostability tests.

References

1. Garriga, J. M.; Llusar, R.; Uriel, S.; Vicent, C.; Usher, A. J.; Lucas, N. T.; Humphrey, M. G.; Samoc, M., *Dalton Trans.* **2003**, 0, 4546-4551.

2. Müller, A.; Wittneben, V.; Krickemeyer, E.; Bögge, H.; Lemke, M., Z. Anorg. Allg. Chem. **1991**, 605, 175-188.

3. Ray, S.; Steven, R. T.; Green, F. M.; Höök, F.; Taskinen, B.; Hytönen, V. P.; Shard, A.

G., Langmuir 2015, 31, 1921-1930.