Entropy–Stabilized Metal Oxide Solid Solutions as CO Oxidation Catalysts with High–Temperature Stability

Hao Chen^{1,3}, Jie Fu³, Pengfei Zhang¹, Honggen Peng^{d,e}, Carter W. Abney², Kecheng Jie¹,

Xiaoming Liu⁴, Miaofang Chi⁴, Sheng Dai^{1,2*}" should be "Hao Chen^{a,c}, Jie Fu^c, Pengfei

Zhang^a, Honggen Peng^{d,e}, Carter W. Abney^b, Kecheng Jie^a, Xiaoming Liu^d, Miaofang Chi^d, Sheng Dai^{a,b*}

^a Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996, USA

^b Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^c Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of

Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China

^d Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN,

37831, USA

^e College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China

Corresponding Author: Sheng Dai, E-mail: dais@ornl.gov.

Experimental

Materials and Chemicals

H₂PtCl₆xH₂O (99.9%, ALDRICH, USA), MgCl₂·6H₂O (AR, ACROS, USA), ZnCl₂ (98%+, Alfa Aesar, USA), CoCl₂ (97.0%, ACROS, USA), CuCl₂ (AR, ACROS, USA) and Ni(OOCCH₃)₂·4H₂O (99.0%, ACROS, USA) were purchased as received. Ammonium hydroxide (NH₃·H₂O, 28.0~30.0%) was brought from Avantor Performance Materials (USA) and cetyltrimethyl ammonium bromide (CTAB, AR) was purchased from MP Biomedicals, LLC (France).

Synthesis of entropy-stabilized metal oxide solid solutions

NiMgCuZnCoOx (mix)

MgCl₂·6H₂O, ZnCl₂, CoCl₂, CuCl₂ and Ni(OOCCH₃)₂·4H₂O are massed and physical mixed just using agate mortar. To ensure adequate mixing, all batches are milled for at least 2 h. Mixed powders are then calcinated in air under 800, 900 and 1000 °C for 4 h (5 °C/min) to obtain desired crystallineoxide phase.

NiMgCuZnCoOx (co-precipitation)

Equal molar ratio (0.02 M) of MgCl₂·6H₂O, ZnCl₂, CoCl₂, CuCl₂ and Ni(OOCCH₃)₂ are dissolved in 30 ml water followed by adding the 0.47 g CTAB. After stirring for 12 h at 60 °C, 2.5 ml NH₃·H₂O was added and continues stirring for 12 h at 60 °C. After filtering, the precipitatewas dried at 120 °C for 4 h and finally calcined at 900 °C for 4 h (5 °C/min) to obtain desired crystallineoxide phase.

PtNiMgCuZnCoOx (co-deposition)

Equal molar ratio (0.02 M) of MgCl₂·6H₂O, ZnCl₂, CoCl₂, CuCl₂ and Ni(OOCCH₃)₂ are dissolved in 30 ml water followed by adding the 0.47 g CTAB. After stirring for 12 h at 60 °C, precalculated amount of H₂PtCl₆ (0.3, 0.6 and 1.0 wt%) in H₂O was added and then stirred constantly for 12 h. 2.5 ml NH₃·H₂O was added and continues stirring for 12 h at 60 °C. After filtering, the precipitatewas dried at 120 °C for 4 h and finally calcined at 900 °C for 4 h (5 °C/min) to obtain desired crystallineoxide phase.

The reduced 0.3wt%PtNiMgCuZnCoOx were measured under 300 °C for 2 h using a mixture of 4% H₂ in 96% N₂.

Characterization of the catalysts

The powder X-ray diffraction (XRD) data were recorded with a PANalytical Empyrean diffractometer, operated at 45 kV and 40 mA (scanning step: 0.02 ° per step). The diffraction patterns were recorded in the range of 10-80°. The nanoparticle size (dBa, nm) was estimated according to Scherrer equation: S4 dBa = $K \cdot \lambda/(\beta \cdot \cos\theta)$ (K = 0.9, λ = 0.1540598 nm).

The nitrogen adsorption and desorption isotherms were measured at 77 K under a Gemini VII surface area analyzer. Samples were degassed for 12 h under N_2 at 100 °C prior to the measurement.

High resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were conducted on

an aberration-corrected FEI Titan S 80-300 TEM/STEM operated at 300 kV and a large active area (60mm2) EDAX silicon drift detector (SDD) for high-collection-efficiency energy dispersive x-ray spectroscopy (EDS).

X-ray photoelectron spectroscopy (XPS) experiments were performed with a PHI 3056 spectrometer equipped with an Al anode source operated at 15 KV and an applied power of 350 W and a pass energy of 93.5 eV.

X-ray photoelectron spectroscopy (XPS) were performed with a PHI 3056 spectrometer equipped with an Al anode source operated at 15 KV and an applied power of 350 W and a pass energy of 93.5 eV.

Temperature-programmed reduction of H₂ (H₂-TPR) experiments were conducted on a PX200 apparatus with a TCD. 50 mg of sample was pretreated at 450 °C (10 °C/min) in He for 1 h and then cooled to room temperature. Then the sample was directly heated from 60 °C to 700 °C at a rate of 10 °C/min in a flow of 5 vol % H₂/N₂ (40 mL/min). The hydrogen consumption was quantitatively evaluated by the TCD signal.

Catalytic CO oxidation

Catalytic CO oxidation was carried out in a fixed-bed reactor (straight quartz tube) at atmospheric pressure ¹. For the measurement of CO light-off curves showing CO conversion as a function of reaction temperature, a 20 mg catalyst supported by quartz wool was loaded in the reactor. The feed gas of 1 % CO balanced with dry air (< 4 ppm water) passed though the catalyst bed at a flow rate of 10 ml/min corresponding to gas hourly space velocity (GHSV) of 30,000 mL (h g_{cat})⁻¹. The concentrations of CO and CO₂ in the

reactor effluent were analyzed by a Buck Scientific 910 gas chromatograph equipped with a dual molecular sieve/porous polymer column (Alltech CTR1) and a thermal conductivity detector. We controlled the reaction temperature through changing its discharge and maintained at each temperature point for 5 min to detect each experiment for two times.

Figure S1. TPR result of NiMgCuZnCoO_x 900 and as-synthesized

0.3wt%PtNiMgCuZnCoO_x.

Figure S2. HRTEM images of reduced 0.3wt%PtNiMgCuZnCoO_x.

Figure S3. TEM–EDS analysis of reduced 0.3wt%PtNiMgCuZnCoO_x.

Figure S4. XPS results of Pt in reduced 0.3wt%PtNiMgCuZnCoO_x.

S10

Figure S5. XPS results of Ni, Mg Cu, Zn and Co in NiMgCuZnCoO_x treated at 800 °C and 900 °C.

Figure S6. CO oxidation over NiMgCuZnCoO_x and reduced 0.3wt%PtNiMgCuZnCoO_x calcined at 600 and 800 °C.

Figure S7. The variation of Lnk with the 1/T for (a) NiMgCuZnCoO_x 900; (b) assynthesized 0.3wt%PtNiMgCuZnCoO_x and (c) reduced 0.3wt%PtNiMgCuZnCoO_x. The relations between Lnk and 1/T were all found to be in linearly.

Figure S8. CO oxidation over reduced PtNiMgCuZnCoO_x 900 with different Pt loading.

Figure S9. CO oxidation over 1wt%Au/Al₂O₃ and Co₃O₄ (as-received and calculated at 900 °C).

Table S1. Calculated pre-exponential factor (A) and apparent activation energy (E α) forNiMgCuZnCoOx900, as-synthesized0.3wt%PtNiMgCuZnCoOxand reduced0.3wt%PtNiMgCuZnCoOx.

Catalyst	$A (\min^{-1})$	$E_a(\mathrm{KJ}\cdot\mathrm{mol}^{-1})$
NiMgCuZnCoO _x 900	2.78×10 ¹⁰	91.5±3.57
as-synthesized 0.3 wt%PtNiMgCuZnCoO _x	1.12×10 ⁸	57.2±6.07
reduced 0.3wt%PtNiMgCuZnCoOx	7.53×10 ⁸	54.8±3.41

References:

C. Tian, X. Zhu, C. W. Abney, X. Liu, G. S. Foo, Z. Wu, M. Li, H. M. Meyer, S. Brown,
S. M. Mahurin, S. Wu, S. Z. Yang, J. Liu and S. Dai, ACS Catal., 2017, 7, 3388–3393.