
1 

 

Supporting Information 

 

1. The electronic and phonon transport coefficients 

The electronic and phonon transport coefficients in the figure-of-merit can be 

obtained from the corresponding Boltzmann theory. 

(1) Based on the energy band structure, the electronic transport coefficients (the 

electrical conductivity  , the Seebeck coefficient S , and the electronic thermal 

conductivity 
e ) are evaluated by using the Boltzmann transport theory within the 

rigid-band picture (Phys. Rev. 132, 2461) and the relaxation time approximation 

(Solid State Physics, Cornell University, 1975): 
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where   is the chemical potential (corresponds to the carrier concentration), T is 

absolute temperature, N
k

 is the total number of k-points, V is the volume of the unit 

cell, e is the electron charge, nv
k  and 

n k
 are the group velocity and eigenvalue 

with band index n at state k , 
FDf  is the Fermi-Dirac distribution function. The 

electron relaxation time ( , )nk T   is accurately predicted by considering the 

electron-phonon coupling. 

(2) The lattice thermal conductivity ( p ) is calculated by using the phonon 

Boltzmann theory, where the required harmonic and anharmonic interatomic force 

constants can be obtained from density functional calculations combined with the 

finite displacement method: 
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where 
Bk  is the Boltzmann constant, Nq

 is the total number of q-points,  is the 

reduced Planck constant, vv q  and v q  are the group velocity and frequency with 

polarization v and vibrational state q, 
BEf  is the Bose-Einstein distribution function. 

The phonon relaxation time , ( , )v tot T q
 is determined by considering both 

phonon-phonon scattering and electron-phonon coupling.  
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2. Convergence test for the k- and q-grids 
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Figure S1. The room temperature (a) Seebeck coefficient S, (b) electrical conductivity 

 , (c) power factor 
2

S  , and (d) ZT value of SiGe compound, calculated with the 

k-grids of 606060, 100100100 and 140140140, combined with the 

q-grids of 151515, 252525 and 353535, respectively. 
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3. Effects of band gap correction on the electronic transport coefficients 
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Figure S2. (a) The Seebeck coefficient S, (b) the electrical conductivity  , (c) the 

power factor 
2

S  , and (d) the ZT value of SiGe compound, plotted as a function of 

carrier concentration at 1200 K. Results with PBE and HSE calculated band gaps are 

both shown for comparison. 
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4. The effects of spin-orbital coupling (SOC) on the band structure 

 

 

Figure S3 The band structure of SiGe compound calculated with and without 

SOC. 

 

We see from Figure S3 that SOC leads to moderate changes to the top valence bands 

while the conduction bands remain the same. This is in good agreement with the 

conclusion from Ma et al. (Phys. Rev. B 97, 045201) that “In Si and GaAs, the 

spin-orbit coupling effect significantly affects the hole mobilities but has no effect on 

electrons”. 
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5. Effects of electron-phonon coupling on the lattice thermal conductivity 

 

Table S1. The lattice thermal conductivity (in unit of W/mK) of SiGe compound 

calculated at a series temperature by including the effect of electron-phonon coupling. 

The numbers in the parenthesis indicate the corresponding carrier concentration (in 

unit of cm−3), and the percentage of decrease in the lattice thermal conductivity as 

compared with that only considering intrinsic phonon scattering (second column). 

300 K 106.3 
105.5  

(1.01018, 1%) 

102.8  

(1.01019, 3%) 

94.6  

(1.01020, 11%) 

57.6  

(1.01021, 46%) 

600 K 60.6 
58.2  

(1.71019, 4%) 

55.9  

(5.21019, 8%) 

51.3  

(1.71020, 15%) 

34.3  

(1.11021, 43%) 

900 K 43.4 
39.8  

(5.91019, 8%) 

37.9  

(1.21020, 13%) 

34.7  

(2.71020, 20%) 

24.7  

(1.21021, 43%) 

1200 K 33.9 
29.6  

(1.21020, 13%) 

28.1  

(2.21020, 18%) 

25.8  

(4.01020, 24%) 

19.1  

(1.41021, 43%) 

 


