Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

## **Supporting Information**

## Intensification of Anodic Charge Transfer from Contaminant Degradation for Efficient H<sub>2</sub> Production

Kai Zhang,<sup>a,d</sup> Gong Zhang,<sup>b</sup> Jiuhui Qu,<sup>b,c</sup> Huijuan Liu\*<sup>a,b</sup>

<sup>a</sup> State Key Laboratory of Environmental Aquatic Chemistry, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

<sup>b</sup> School of Environment, Tsinghua University, Beijing 100084, China

° Key Laboratory of Drinking Water Science and Technology, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

<sup>d</sup> University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: hjliu@rcees.ac.cn

**Supplementary Figures** 



**Figure S1.** The SEM of the precursors of a) the Mo-Ni<sub>2</sub>P and b) the Ni<sub>2</sub>P. The precursors of the Mo-Ni<sub>2</sub>P were synthesized with the hydrothermal method and the prepared materials included citric acid, Ni sources and Mo sources. In contrast, the precursors of the Ni<sub>2</sub>P were also synthesized with the same hydrothermal method, just without Mo sources.



Figure S2. XRD patterns of the zoom-in regions (40-41.5°) of Ni<sub>2</sub>P/NF and Mo-Ni<sub>2</sub>P/NF.



Figure S3. The XRD patterns of the as-prepared Mo. We repeated the experiment without the addition of Ni source for obtaining the Mo materials. The  $MoO_2$  structure indicated that Mo-P bonds could not be formed under 350 °C pyrolysis conditions, excluding the possibility of substitution of Ni by Mo.



Figure S4. SEM images of  $Ni_2P$  /NF at a) low and c) high magnifications. b) SEM and the corresponding elemental mapping of  $Ni_2P$ /NF.



Figure S5. SEM images of pristine Ni foam (NF) at low and (inset) high magnifications.



Figure S6. HAADF-STEM image and EDX mapping of Mo-Ni<sub>2</sub>P/NF.



Figure S7. a) XPS survey of  $Ni_2P$  /NF and Mo- $Ni_2P$ /NF. b) Surface Ni percentages determined by Figure 2a and Table S2



Figure S8. In-situ Raman spectra collected for the  $Ni_2P$  and  $Mo-Ni_2P$  electrodes at a

potential of 0.4 V vs. Ag/AgCl in 1 M KOH solution.



Figure S9. High-resolution XPS spectra of Ni for the pristine, post-OER, post-FOR,

and post-UOR Mo-Ni<sub>2</sub>P/NF samples



**Figure S10**. HRTEM images of Mo-Ni<sub>2</sub>P/NF sample after a) FOR and b) UOR

electrolysis.



**Figure S11**. Linear sweep voltammetry (LSV) plots of Mo-Ni<sub>2</sub>P/NF and Ni<sub>2</sub>P/NF, respectively, in 1 M KOH electrolyte with 0.1 M formate.



**Figure S12**. a) XRD patterns of Co-Fe<sub>2</sub>P/NF /NF. b, c) SEM images of Co-Fe<sub>2</sub>P/NF electrode. e) element mapping of Co, Fe and P. f-h) High-resolution XPS spectrum of Co 2p, Fe 2p, and P 2p for the Co-Fe<sub>2</sub>P/NF.



**Figure S13**. Chronopotentiometric curve of Mo-Ni<sub>2</sub>P/NF for H<sub>2</sub> evolution at -20 mA  $cm^{-2}$  in 1.0 M KOH containing 0.1 M formate and 0.1 M urea.



**Figure S14.** Digital images to show the Mo-Ni<sub>2</sub>P/NF (+)  $\parallel$  Co-Fe<sub>2</sub>P/NF (-) urea electrolyzer powered by a single cell AAA battery with a nominal voltage of 1.5 V for UOR.



Figure S15. Controlled potential electrolysis of  $Mo-Ni_2P/NF$  in 1.0 M KOH containing 0.1 M urea at a potential of 1.48 V vs RHE.



**Figure S16.** Degradation (%) changes of formate for Mo-Ni<sub>2</sub>P/NF at 1.48 V vs. RHE in 1.0 m KOH with 0.1 M formate.

## **Supplementary Tables**

| Element | Atom (%) <sup>a</sup> |  |  |
|---------|-----------------------|--|--|
| Мо      | 5.12                  |  |  |
| Ni      | 41.35                 |  |  |
| Р       | 53.53                 |  |  |

Table S1. Composition of the Mo-Ni<sub>2</sub>P used in our experiment

<sup>a</sup>Data was calculated from the result of ICP-OES.

**Table S2.** Fitting parameters (peak position, peak area and species percentage) forboth Ni  $2p_{3/2}$  and Ni  $2p_{1/2}$  profiles taken on Mo-Ni<sub>2</sub>P and Ni<sub>2</sub>P

| Samples              | species          | B.E.(eV)          |                   | area              |                   | Ni                |
|----------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                      |                  | 2p <sub>3/2</sub> | 2p <sub>1/2</sub> | 2p <sub>3/2</sub> | 2p <sub>1/2</sub> | percentage<br>(%) |
|                      | Ni <sup>δ+</sup> | 852.6             | 870.0             | 309               | 127               |                   |
| Mo-Ni <sub>2</sub> P | Oxid Ni          | 856.2             | 874.2             | 1323              | 658               | 59.4              |
|                      | Sat              | 861.2             | 880.0             | 1239              | 412               |                   |
| Ni <sub>2</sub> P    | Ni <sup>ō+</sup> | 853.0             | 870.0             | 65                | 60                |                   |
|                      | Oxid Ni          | 857.0             | 875.0             | 482               | 318               | 40.5              |
|                      | Sat              | 862.0             | 880.0             | 845               | 510               |                   |