Electronic Supplementary Information (ESI)

Bifunctional Electrocatalysts of MOF-Derived Co-N/C on Bamboo-Like MnO

Nanowires for High-Performance Liquid and Solid-State Zn-Air Batteries

Ya-Nan Chen, Yibo Guo, Huijuan Cui, Zhaojun Xie*, Xin Zhang, Jinping Wei, and Zhen Zhou*

Fig. S1 (a) SEM and (b) TEM images of hollow MnO₂. (c) SEM and (d) TEM images of MnO₂@ZIF-67.

Fig. S2 XRD patterns for various samples.

Fig. S3 SEM images of Co-N/C derived from ZIF-67.

Fig. S4 (a) N₂ adsorption-desorption isotherms and (b) pore size distribution curve for MnO@Co-N/C.

Fig. S5 CV curves in O₂-saturated (solid lines) or N₂-saturated (dashed line) in 0.1 M KOH at 5 mV s⁻¹.

Fig. S6 Kinetic current density at 0.85 V for various catalysts.

 Table S1. Comparison of the ORR and OER performance of MnO@Co-N/C against previously

 reported bifunctional catalyst in 0.1M KOH solution.

Catalysts	E _{ORR1/2} /V half-wave potential	E _{OER} /V i=10 mA cm ⁻²		Reference
MnO@Co-N/C	0.83	1.76	0.93	This work
<i>c</i> -CoMn₂/C	0.85	1.80	0.95	1
NPMC-1000	0.85	1.90	1.05	2
3DOM Co ₃ O ₄	0.64	1.67	1.00	3
ZnCoNC-0.1	0.84	1.75	0.91	4
Co ₂ P@CoNPG-900	0.81	1.73	0.92	5
RuO ₂	0.29	1.64	1.27	6
Pt/C	0.9	1.90	1.0	6

Fig. S7 Tafel plots calculated from OER curves.

Fig. S8 XPS of Co2p and Mn2p before and after OER.

Fig. S9 XRD patterns of MnO@Co-N/C obtained at 600, 700, and 800 °C.

Fig. S10 LSV curves of MnO@Co-N/C prepared at different temperatures.

Fig. S11 EIS of MnO@Co-N/C prepared at different temperatures loaded on glass-carbon electrodes.

Fig. S12 TEM image of MnO@Co-N/C-800.

Fig. S13 LSV curves of MnO@Co-N/C before and after $0.5 \text{ M H}_2\text{SO}_4$ treatment.

Video S1 The video of a mini fan driven by two Zn-air batteries (Double click the picture to watch the video).

Fig. S14 The photograph of the PVA gel electrolyte.

Fig. S15 Open circuit potential of a liquid Zn-air battery with MnO@Co-N/C catalysts.

Table S2. Cv	vcle performance	of rechargeable Zn-air	batteries with variou	s catalysts.
	yere periormanee	er reenargeable En an	Satteries with variou	5 catalysts.

	Peak power	Cycling		
catalyst	density (mW cm ⁻²)	conditions	Cycling performance	Reference
		(mA cm ⁻²)		
MnO@Co-N/C	130.3	5	20 min per cycle for 1900	This work
			Cycles (633 h)	
		10	2 h per cycle for 89 cycles	This work
			(178 h)	
Co3O4/N-rGO	-	3	20 min per cycle for 75	7
			cycles (25 h)	
Fe _{0.5} Co _{0.5} O _x /NrGO	86	10	2 h per cycle for 60	8
			cycles (120 h)	
$Co_3FeS_{1.5}(OH)_6$	113.1	2	20 min per cycle for 108	9
			cycles (36 h)	
Co ₃ O ₄ /N-CNTAs	-	5	10 min per cycle for100	10
			cycles (16.7 h)	
Co-N _x -C	152	2	20 min per cycle for 180	11
			cycles (60 h)	
CoS _x @PCN/rGO	-	10	6.6 min per cycle for 394	12
			cycles (43.8 h)	
NPMC-1000	55	2	10 min per cycle for 180	13
			cycles (30 h)	
RuO ₂ -coated	-	4	20 min per cycle for 100	14
MCNAs			cycles (34 h)	
C-MOF-C2-900	105	10	20 min per cycle for 90	15
			cycles (30 h)	
S-GNS/NiCo ₂ S ₄	216.3	10	40 min per cycle for 150	16
			cycles (100 h)	

References

- 1. C. Li, X. Han, F. Cheng, Y. Hu, C. Chen and J. Chen, Nat. Commun., 2015, 6, 7345.
- 2. J. Zhang, Z. Zhao, Z. Xia and L. Dai, Nat. Nanotech., 2015, 10, 444-452.
- 3. M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano and Z. Chen, Small, 2016, 12, 2707-2714.
- 4. X. Wu, G. Meng, W. Liu, T. Li, Q. Yang, X. Sun and J. Liu, Nano Research, 2017, **11**, 163-173.
- 5. H. Jiang, C. Li, H. Shen, Y. Liu, W. Li and J. Li, *Electrochim. Acta*, 2017, 231, 344-353.
- A. Aijaz., J. Masa., C. Rçsler., W. Xia., P. Weide., A. J. R. Botz., R. A. Fischer. and W. S. a. M. Muhler, Angew. Chem. Int. Ed., 2016, 55, 4087-4091.
- 7. Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu and J. Lu, Adv. Mater., 2018, 30, 1703657.
- 8. L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu and Y. Chen, Adv. Mater., 2017, 29, 1701410.
- 9. H. F. Wang, C. Tang, B. Wang, B. Q. Li and Q. Zhang, Adv. Mater., 2017, 29, 1702327.
- 10. W. Tian, H. Li, B. Qin, Y. Xu, Y. Hao, Y. Li, G. Zhang, J. Liu, X. Sun and X. Duan, *J. Mater. Chem. A*, 2017, **5**, 7103-7110.
- 11. C. Tang, B. Wang, H. F. Wang and Q. Zhang, Adv. Mater., 2017, 29, 1703185.
- 12. W. Niu, Z. Li, K. Marcus, L. Zhou, Y. Li, R. Ye, K. Liang and Y. Yang, Adv. Energy Mater., 2017, 7, 1701642.
- 13. J. Zhang, Z. Zhao, Z. Xia and L. Dai, Nat. Nanotech., 2015, 10, 444-452.
- 14. Z. Guo, C. Li, W. Li, H. Guo, X. Su, P. He, Y. Wang and Y. Xia, J. Mater. Chem. A, 2016, 4, 6282-6289.
- 15. M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, Adv. Mater., 2018, 30, 1705431.
- 16. W. Liu, J. Zhang, Z. Bai, G. Jiang, M. Li, K. Feng, L. Yang, Y. Ding, T. Yu, Z. Chen and A. Yu, *Adv. Funct. Mater.*, 2018, **28**, 1706675.