Supporting Information

Electrospun Fluorescent Sensors on Selective Detection of Nitro Explosive Vapors and Trace Water

Wandan Wu,^a Naien Shi,^{*a} Jun Zhang,^a Xiaodong Wu,^a Tao Wang,^a Lei Yang,^a Rui Yang,^a Changjin Ou,^a Wei Xue,^a Xiaomiao Feng,^a Linghai Xie^a, Wei Huang^{*abc}

^aKey Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, China

^bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, China ^cShanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shanxi, China

E-mail: iamneshi@njupt.edu.cn, wei-huang@njtech.edu.cn

A. The diameter distribution of the PS/PyCz porous nanofibers

Fig. S1 The statistical diameter distribution of PS/PyCz nanofibers shown in Fig. 1a in the text.

B. TEM and distribution of porosity of the PS/PyCz porous nanofibers

Fig. S2 (a) TEM image of PS/PyCz porous nanofibers. (b) The corresponding statistical pore distribution of the average length of the short edge of the pores in the nanofibers.

C. The calculated energy levels for different conformations of excited-state PyCz

Table S1. The energy levels for different conformations of PyCz and corresponding differences in the HOMO-LUMO level that decide the emissions. Geometry optimization and energy calculation are performed by time-dependent density functional theory (TD-DFT) with the basis of B3LYP/6-31G(d).

Dihedral Angel (°)	LUMO (eV)	HOMO (eV)	ΔE (eV)
89.2ª	-1.994	-5.207	2.640
85	-1.992	-5.205	2.641
75	-1.985	-5.191	2.655
70	-1.979	-5.181	2.666
65	-1.971	-5.170	2.680
64.2^{b}	-1.964	-5.159	2.695

Notes: a indicates the optimized excited state in gas phase; b indicates the optimized excited state in solution.

D. Schematic diagram PyCz/PS porous nanofibers towards the target

explosives

Fig. S3 (a) Schematic molecular stacking modes and quenching process of PS/PyCz porous electrospun nanofibers. (b) Photo-induced electron transfer mechanism of the sensing materials on the detection of nitro explosives.

4

Fig. S4 Detailed time-dependent fluorescence quenching process of PS/PyCz porous nanofibrous film towards perfume vapor (I to VII: 0, 5, 10, 20, 30, 60, 90, 120 min; $\lambda_{ex} = 340$ nm).

F. Fluorescent intensity changes for PS/PyCz porous nanofibrous film in wine, juice and scallion vapor

Fig. S5 Time-dependent fluorescence quenching process of PS/PyCz porous nanofibrous film towards (a) juice vapor, (b) wine vapor and (c) scallion vapor in 2 h. The emission spectra were collected every 5 minutes.

G. SEM image/FLM photograph of PEO/ PyCz hybrid fibers

Fig. S6 (a) SEM image and (b) FLM photograph of PEO/PyCz nanofibers.

H. Excitation and emission spectra of PEO/PyCz nanofibers

Fig. S7 Excitation (λ_{em} = 432 nm) and emission spectra (λ_{ex} = 348 nm) of PEO/PyCz fibers.

I. Fluorescent intensity for PEO/PyCz nanofibrous film in wine, juice and scallion vapor

Fig. S8 Time-dependent fluorescence quenching process of PEO/PyCz nanofibrous film towards (a) juice vapor, (b) wine vapor and (c) scallion vapor in 2 h.

J. Time-dependent fluorescence quenching process of PEO/PyCz fibrous film under different humidity

Fig. S9 Time-dependent fluorescence quenching process of PEO/PyCz fibrous film towards different water amount degrees of (a) 0.5, (b) 0.3, (c) 0.2 and (d) 0.1 μ L in a 3.5 mL quartz cell.

Fig. S10 Time-dependent fluorescence quenching process of towards different amount degrees of (a) 0.1 μ L and (b) 0.3 μ L Cu(NO₃)₂ aqueous solution sealed in a 3.5 mL quartz cell.

K. Fluorescence quenching efficiency of electrospun PS/PyCz porous film in NB vapor

Fig. S11 Fluorescence quenching efficiency of PS/PyCz film towards NB vapor for 2h.

L. Energy levels of HOMO and LUMO orbitals of PyCz and the target explosives

Fig. S12 Energy levels of HOMO and LUMO orbitals of ground state PyCz and the target explosives. Geometry optimization and energy calculation were performed by density-functional theory with a basis of B3LYP/6-31G(d).

M. Fluorescence quenching results

 Table S2.
 Summary of fluorescence quenching efficiencies of PS/PyCz porous

 nanofibrous films and PEO/PyCz nanofibrous films towards the various analytes.

		NM	NB	NT	DN	T D	NB	TNT
PS/PyCz	Z	0.92	0.95	0.88	0.7	7 0	.74	0.45
PEO/PyC	Zz	0.90	0.92	0.79	0.6	5 0	.60	0.89
	Urea	Naphthalene		Smoke	Water	Perfume	Juice	Wine
PS/PyCz	0.04		0.05		0.05	0.10	0.04	0.06
PEO/PyCz	0.04	0.03		0.09	0.94	0.76	0.96	0.90

N. Supporting data for the quenching mechanism on the detection of trace water

Fig. S13 SEM image of PEO/PyCz electrospun nanofibers after exposure to water vapor for 2 h.

Fig. S14 Fluorescence decay profiles of PEO/PyCz original nanofibers, collapsed nanofibers, PyCz chloroform solution and spin-coated film.

Fig. S15 The excitation and emission spectra of PEO/PyCz electrospun nanofibers (a) before and (b) after exposure to water vapor for 2 h.

Fig. S16 The optimized geometry structure of excited state of PyCz. The dihedral angle of the carbazole and pyrene units is 89.2°.

Fig. S17 The optimized geometry structure of excited state of PyCz in chloroform solution. The dihedral angle of the carbazole and pyrene units is 64.2°.

Fig. S18 Fluorescence spectra of PyCz acetone solution (0.3 mM) and nanoaggregates in acetone:water (v:v=1:11) mixed solution (PyCz:0.3 mM). Notes: The nanostructures are prepared as follows. A certain amount of acetone solution of PyCz (3 mM, 0.5 mL) was injected dropwise into 5 mL water and stirred for 3 min at 25 °C.

Fig. S19 FESEM images of (a) the obtained electrospun PNIPAM/PyCz nanofibrous membrane in air and (d) the PNIPAM/PyCz membrane exposed to water vapor for 2 h.

Fig. S20 Time-dependent fluorescence quenching process of PNIPAM/PyCz nanofibers towards water (a), juice (b), wine (c) and scallion (d) in vapor for 2 h.