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A. The diameter distribution of the PS/PyCz porous nanofibers
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Fig. S1 The statistical diameter distribution of PS/PyCz nanofibers shown in Fig. 1a 

in the text.

B. TEM and distribution of porosity of the PS/PyCz porous 

nanofibers

Fig. S2 (a) TEM image of PS/PyCz porous nanofibers. (b) The corresponding 

statistical pore distribution of the average length of the short edge of the pores in the 

nanofibers.
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C. The calculated energy levels for different conformations of 

excited-state PyCz

Table S1. The energy levels for different conformations of PyCz and corresponding 

differences in the HOMO-LUMO level that decide the emissions. Geometry 

optimization and energy calculation are performed by time-dependent density 

functional theory (TD-DFT) with the basis of B3LYP/6-31G(d).

Dihedral Angel (o)
LUMO 

(eV)
HOMO

(eV)

∆𝐸 
(𝑒𝑉)

89.2a -1.994 -5.207 2.640

85 -1.992 -5.205 2.641

75 -1.985 -5.191 2.655

70 -1.979 -5.181 2.666

65 -1.971 -5.170 2.680

64.2b -1.964 -5.159 2.695

Notes: a indicates the optimized excited state in gas phase; b indicates the optimized excited 

state in solution.
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D. Schematic diagram PyCz/PS porous nanofibers towards the target 

explosives 

 
Fig. S3 (a) Schematic molecular stacking modes and quenching process of PS/PyCz 

porous electrospun nanofibers. (b) Photo-induced electron transfer mechanism of the 

sensing materials on the detection of nitro explosives.
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E. Time-dependent fluorescence quenching process of PS/PyCz 

nanofibrous film in perfume 

Fig. S4 Detailed time-dependent fluorescence quenching process of PS/PyCz porous 

nanofibrous film towards perfume vapor (Ⅰ to Ⅷ : 0, 5, 10, 20, 30, 60, 90, 120 min; 

λex = 340 nm). 
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F. Fluorescent intensity changes for PS/PyCz porous nanofibrous 

film in wine, juice and scallion vapor

Fig. S5 Time-dependent fluorescence quenching process of PS/PyCz porous 

nanofibrous film towards (a) juice vapor, (b) wine vapor and (c) scallion vapor in 2 h. 

The emission spectra were collected every 5 minutes.
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G. SEM image/FLM photograph of PEO/ PyCz hybrid fibers

Fig. S6 (a) SEM image and (b) FLM photograph of PEO/PyCz nanofibers.

H. Excitation and emission spectra of PEO/PyCz nanofibers 
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Fig. S7 Excitation (λem = 432 nm) and emission spectra (λex = 348 nm) of PEO/PyCz 

fibers.
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I. Fluorescent intensity for PEO/PyCz nanofibrous film in wine, juice 

and scallion vapor

Fig. S8 Time-dependent fluorescence quenching process of PEO/PyCz nanofibrous 

film towards (a) juice vapor, (b) wine vapor and (c) scallion vapor in 2 h.
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J. Time-dependent fluorescence quenching process of PEO/PyCz 

fibrous film under different humidity

Fig. S9 Time-dependent fluorescence quenching process of PEO/PyCz fibrous film 

towards different water amount degrees of (a) 0.5, (b) 0.3, (c) 0.2 and (d) 0.1 µL in a 

3.5 mL quartz cell.

Fig. S10 Time-dependent fluorescence quenching process of towards different 

amount degrees of (a) 0.1 µL and (b) 0.3 µL Cu(NO3)2 aqueous solution sealed in a 

3.5 mL quartz cell. 
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K. Fluorescence quenching efficiency of electrospun PS/PyCz porous 

film in NB vapor

Fig. S11 Fluorescence quenching efficiency of PS/PyCz film towards NB vapor for 

2h. 

L. Energy levels of HOMO and LUMO orbitals of PyCz and the 

target explosives
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Fig. S12 Energy levels of HOMO and LUMO orbitals of ground state PyCz and the 

target explosives. Geometry optimization and energy calculation were performed by 

density-functional theory with a basis of B3LYP/6-31G(d). 

M. Fluorescence quenching results

Table S2. Summary of fluorescence quenching efficiencies of PS/PyCz porous 

nanofibrous films and PEO/PyCz nanofibrous films towards the various analytes.

NM NB NT DNT DNB TNT

PS/PyCz 0.92 0.95 0.88 0.77 0.74 0.45

PEO/PyCz 0.90 0.92 0.79 0.65 0.60 0.89

Urea Naphthalene Smoke Water Perfume Juice Wine

PS/PyCz 0.04 0.05 0.08 0.05 0.10 0.04 0.06

PEO/PyCz 0.04 0.03 0.09 0.94 0.76 0.96 0.90
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N. Supporting data for the quenching mechanism on the detection of 

trace water 

Fig. S13 SEM image of PEO/PyCz electrospun nanofibers after exposure to water 

vapor for 2 h.
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Fig. S14 Fluorescence decay profiles of PEO/PyCz original nanofibers, collapsed 

nanofibers, PyCz chloroform solution and spin-coated film. 
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Fig. S15 The excitation and emission spectra of PEO/PyCz electrospun nanofibers (a) 

before and (b) after exposure to water vapor for 2 h.

Fig. S16 The optimized geometry structure of excited state of PyCz. The dihedral 

angle of the carbazole and pyrene units is 89.2°.
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Fig. S17 The optimized geometry structure of excited state of PyCz in chloroform 

solution. The dihedral angle of the carbazole and pyrene units is 64.2°.

Fig. S18 Fluorescence spectra of PyCz acetone solution (0.3 mM) and nanoaggregates 

in acetone:water (v:v=1:11) mixed solution (PyCz:0.3 mM). Notes: The 

nanostructures are prepared as follows. A certain amount of acetone solution of PyCz 

(3 mM, 0.5 mL) was injected dropwise into 5 mL water and stirred for 3 min at 25 oC. 
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Fig. S19 FESEM images of (a) the obtained electrospun PNIPAM/PyCz nanofibrous 

membrane in air and (d) the PNIPAM/PyCz membrane exposed to water vapor for 2 h. 

Fig. S20 Time-dependent fluorescence quenching process of PNIPAM/PyCz 

nanofibers towards water (a), juice (b), wine (c) and scallion (d) in vapor for 2 h.


