Supporting Information

An overall water-splitting polyoxometalate catalyst for the electromicrobial conversion of CO₂ in neutral water

Meng Wang, Wei Zhong, Shuangshuang Zhang, Rongji Liu, Jianmin Xing, and Guangjin Zhang*

Figure S1. Energy-dispersive X-ray spectrum (EDS) combined with SEM images.

Figure S2. (a) Cu 2p, (b) Co 2p, (c) P 2p and (d) W 4f XPS spectra of as-prepared Cu₆Co₇/CC powder and Cu₆Co₇/CC film.

Figure S3. I-t curves for HER and H₂ evolving.

Figure S4. I-t curves for OER.

Figure S6. SEM images of Cu₆Co₇/CC after HER test (a) and OER test (b).

Figure S5. Linear sweep voltammetry curves of the ORR for Cu_6Co_7/CC after HER test (black) and Pt/C/CC (red) in O_2 saturated in phosphate buffer (pH 7) at a scan rate of 10 mV/s.

Figure S7. (a) Cu 2p, (b) Co 2p, (c) P 2p and (d) W 4f XPS spectra of Cu₆Co₇/CC after HER and OER tests.

Figure S8. XRD spectra of Cu₆Co₇/CC after HER and OER tests.

- Figure S9. SEM images of Cu₆Co₇/CC after the overall water splitting reaction ((a) anode, (b) cathode) .
- Figure S10. The dependence of the growth of *R. eutropha* on hydrogen evolution during the electrolysis with CO_2 ($E_{appl}=1.8$ V).
- Table S1. Comparison of HER performances of different catalysts under neutral conditions.
- **Table S2.** Comparison of the performance of Cu_6Co_7/CC to other bioelectrochemical systems for CO_2 fixation.

<u>-25µm</u>	C Ka1_2	N Kat_2
0 Kd	P Ka1	W La1
Cu Kal	Co Kal	

Figure S1. Energy-dispersive X-ray spectrum (EDS) combined with SEM images of the Cu_6Co_7/CC film.

Figure S2. (a) Cu 2p, (b) Co 2p, (c) P 2p and (d) W 4f XPS spectra of as-prepared Cu_6Co_7/CC powder and Cu_6Co_7/CC film.

Figure S3. (a) I-t curves for Cu_6Co_7/CC at a fixed overpotential of 400 and 350 mV for HER proves, (b) The theoretically calculated and experimentally measured amount of evolved hydrogen during electrolysis process at an overpotential of 400 mV.

Figure S4. I-t curves for Cu_6Co_7/CC at a fixed overpotential of 400 mV for OER.

Figures S5. Linear sweep voltammetry curves of the ORR for Cu_6Co_7/CC after HER test (black) and Pt/C/CC (red) in O_2 saturated in phosphate buffer (pH 7) at a scan rate of 10 mV/s.

Figure S6. SEM images of Cu_6Co_7/CC after HER (a) and OER tests (b), (c) EDS combined with SEM images of the Cu_6Co_7/CC after HER test.

Figure S7. (a) Cu 2p, (b) Co 2p, (c) P 2p and (d) W 4f XPS spectra of Cu_6Co_7/CC after HER and OER tests.

Figure S8. XRD spectra of Cu₆Co₇/CC after HER and OER tests.

Figure S9. SEM images of Cu_6Co_7/CC after the overall water splitting reaction ((a)

anode, (b) cathode).

Figure S10. The dependence of the growth of *R. eutropha* on hydrogen evolution during the electrolysis with CO₂. ($E_{appl}=1.8$ V)

Catalust	Electro J ^a (mA η ^b (mV vs. alvst		η ^ь (mV vs.	Tafel slope	Ref.	
Catalyst	lyte	cm ⁻²) RHE)		(mV dec ⁻¹)		
		10	356		Thia	
Cu ₆ Co ₇ /CC	pH 7	50	417	96	1 IIIS	
		100	439		WOIK	
H ₂ -CoCat	pH 7	2.0	385	140	[1]	
Co(bpbH ₂)Cl ₂	pH 7	1.0	1148	N/A	[2]	
		10	85			
Co-HNP	pH 7	100	237	38	[3]	
		50	180			
Co-S	pH 7	50	397	93	[4]	
Carbon-armored						
Co_9S_8	pH 7	10	280	N/A	[5]	
nanoparticle						
Cu(II) 1,2-	nH 7	1.0	157	127	[6]	
ethylenediamine	рп /	1.0	137	127	[0]	
FeS, pyrrhotite	pH 7	0.7	450	150	[7]	
Co ₉ S ₈ /CC	pH 7	10	175	N/A	[8]	

Table S1. Comparison of HER performances of different catalysts under neutral conditions.

		50	295		
 Co-NRCNTs	pH 7	100	540	N/A	[9]

^a Current density (mA cm⁻²)

^b Overpotential (mV vs. RHE)

- N/A These values were unavailable
- References for Table S1:
- [1] S. Cobo, J. Heidkamp, P.-A.Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin,; M. Fontecave, V. Artero, *Nat. Mater.* 2012, *11*, 802.
- [2] Z.-Q. Wang, L.-Z. Tang, Y.-X. Zhang, S.-Z. Zhan, J.-S. Ye, J. Power Sources
 2015, 287, 50.
- [3] B. Liu, L. Zhang, W. Xiong, M. Ma, Angew. Chem. Int. Ed. 2016, 55, 6725.
- [4] Y. Sun, C. Liu, D. C. Grauer, J. Yano, J. R. Long, P. Yang, C. J. Chang, J. Am. Chem. Soc. 2013, 135, 17699.
- [5] L.-L. Feng, G.-D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y.-C. Zou, D. Wang, X.Zou, ACS Appl. Mater. Interfaces 2015, 7, 980.
- [6] X. Liu, S. Cui, Z. Sun, P. Du, Chem. Commun. 2015, 51, 12954.
- [7] C. Di Giovanni, W.-A. Wang, S. Nowak, J.-M. Grenèche, H. Lecoq, L. Mouton,
- M. Giraud, C. Tard, ACS Catal. 2014, 4, 681.
- [8] L.-L. Feng, M. Fan, Y. Wu, Y. Liu, G.-D. Li, H. Chen, W. Chen, D. Wang, X. Zou,
- J. Mater. Chem. A 2016, 4, 6860.

[9] X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková, T. Asefa, Angew. Chem. Int. Ed. 2014, 53, 4372.

Table S2. Comparison of the performance of Cu_6Co_7/CC to other bioelectrochemical systems for CO_2 fixation.

Cathode Anode	Organism	E _{appl}	Product	η_{elec}	η_{SCE}	Ref.

		1.8	_	41%	7.4%	This
	<i>R. eutropha</i> H16	2.0	Biomass	50%	9%	work
Cu ₆ CO ₇ /CC		2.2		55%	9.9%	WOIK
Pt Pt	R. eutropha H16	5.0	Biomass	4.8%	0.9%	[1]
CoDICoDi	P. autoopha U16	2.0	Biomass	54%	9.7%	[2]
COP COP1	K. eutropha H10	2.0	PHB	36%	6.4%	[2]
CoPi SS	R. eutropha H16	3.0	Biomass	4.6%	0.8%	[3]
CoPi NiMoZn	R. eutropha H16	2.7	Biomass	13%	2.3%	[3]
CoPi SS	R. eutropha	2.0	Diamagn	4 (0/	0.90/	[2]
	Re2133-pEG12	3.0 EG12		4.6%	0.8%	[3]
Pt In	<i>R. eutropha</i> LH74D	4.0	Biomass	1.8%	0.3%	[4]
Graphite Graphite	S. ovata	3.0	acetate	30%	5.4%	[5]

References for Table S2:

[1] E. Schuster, H. G. Schlegel, Arch. Mikrobiol. 1967, 58, 380.

- [2] C. Liu, B. C. Colón, M. Ziesack, P. A. Silver, D. G. Nocera, *Science* 2016, 352, 1210.
- [3] J. P. Torella, C. J. Gagliardi, J. S. Chen, D. K. Bediako, B. Colón, J. C. Way, P. A. Silver, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2015, 112, 2337.
- [4] H. Li, P. H. Opgenorth, D. G. Wernick, S. Rogers, T. Y. Wu, W. Higashide, P.
- Malati, Y. X. Huo, K. M. Cho, J. C. Liao, Science 2012, 335, 1596.
- [5] C. G. S. Giddings, K. P.Nevin, T. Woodward, D. R. Lovley, C. S. Butler, Front. Microbiol. 2015, 6.