Supporting Information

Co₉S₈@Carbon Porous Nanocages Derived from a Metal-Organic Framework: A Highly Efficient Bifunctional Catalyst for Aprotic Li-O₂ Batteries

Yaying Dou,^{ab} Ruqian Lian,^a Yantao Zhang,^{bc} Yingying Zhao,^a Gang Chen,^a Yingjin

Wei*a and Zhangquan Peng*b

a. Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of

Education), College of Physics, Jilin University, Changchun, Jilin, 130012, China.*

E-mail: <u>yjwei@jlu.edu.cn</u>

b. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied
 Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China.*

E-mail: <u>zqpeng@ciac.ac.cn</u>

c. University of Chinese Academy of Sciences, Beijing, 100049, China.

Figure S1. XRD pattern of ZIF-67 polyhedrons.

Figure S2. TGA curve of the synthesized Co_9S_8 @CPNs under air flow with a temperature ramp of 10 °C min⁻¹. The content of carbon in Co_9S_8 @CPN_S was determined by following equation:

30 - 150 °C:
$$H_2O(ads) \rightarrow H_2O(g)$$
 (1)
150 - 435 °C: $Co_9S_8@CPNs + O_2(g) \rightarrow CoSO_4 + CO_2(g)$ (2)
435 - 850 °C: $CoSO_4 + O_2(g) \rightarrow Co_3O_4 + SO_3(g)$ (3)

Figure S3. Rate capability of Super P cathode in the 1.0 M LiTFSI/TEGDME electrolyte at different current densities from 50 mA g⁻¹ to 300 mA g⁻¹.

Figure S4. Cycling performance of Super P cathodes in the 1.0 M LiTFSI/TEGDME electrolyte at capacity limits of 500 mAh g⁻¹ and the current density of 100 mA g⁻¹.

Figure S5. Voltage of the terminal discharge and variation in the discharge/charge capacity *vs*. the cycle number of Super P cathode at the current density of 100 mA g⁻¹.

Figure S6. Nyquist plots at different discharge/charge status of Super P cathode in the frequency range of 10⁵ to 0.1 Hz.

Figure S7. SEM image of the discharged Super P cathode with a current density of 100 mA g⁻¹.

Catalyst	Cycling performance	Measurement conditions	Reference
Flowerlike NiS	30 cycles	900 mAh/g at 75 mA/g	[1]
N_∞ S co-doped FeS	100 cycles	500 mAh/g at 0.3 mA/cm ²	[2]
MoS ₂	30 cycles	500 mAh/g at 0.1 mA/cm ²	[3]
CoS ₂ nanoparticals@graphene	20 cycles	500 mAh/g at 200 mA/g	[4]
Co ₃ S ₄	25 cycles	500 mAh/g at 100 mA/g	[5]
$MoS_2@gold nanoparticals$	50 cycles	1000 mAh/g at 300 mA/g	[6]
MoSSe	30 cycles	730 mAh/g at 50 mA/g	[7]
Co ₉ S ₈ @CPNs	110 cycles	500 mAh/g at 100 mA/g	This work

Table S1. Comparison of the cycling performances of various sulfide-based catalysts used in aprotic

 Li-O2 batteries.

References

1 Z. Ma, X. Yuan, Z. Zhang, D. Mei, L. Lin, Z.-F. Ma, L. Zhang, J. Yang and J. Zhang, *Sci. Rep.*, 2015, **5**, 18199-18207.

2 P. Ramakrishnan, S. Shanmugam and J.-H. Kim, *Chemsuschem*, 2017, 10, 1554-1562.

M. Asadi, B. Kumar, C. Liu, P. Phillips, P. Yasaei, A. Behranginia, P. Zapol, R. F. Klie, L. A. Curtiss and A. Salehi-Khojin, *ACS Nano*, 2016, **10**, 2167-2175.

4 Z. Lyu, J. Zhang, L. Wang, K. Yuan, Y. Luan, P. Xiao and W. Chen, *RSC. Adv.*, 2016, **6**, 31739-31743.

5 P. Sennu, M. Christy, V. Aravindan, Y.G. Lee, K. S. Nahm and Y.-S. Lee, *Chem. Mater.*, 2015, **27**, 5726-5735.

6 P. Zhang, X. Lu, Y.Huang, J. Deng, L. Zhang, F. Ding, Z. Su, G. Wei and O. G. Schmidtbe, *J. Mater. Chem. A*, 2015, **3**, 14562-14566.

7 S. Zhang, Z. Huang, Z. Wen, L. Zhang, J. Jin, R. Shahbazian-Yassar and J. Yang, *Nano Lett.*, 2017, **17**, 3518-3526.