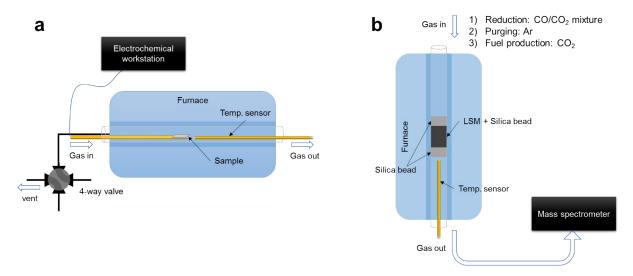
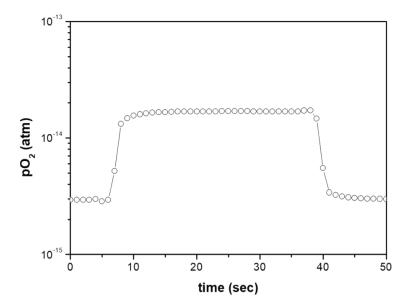
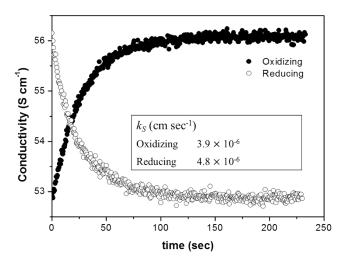
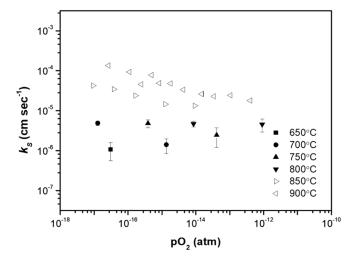
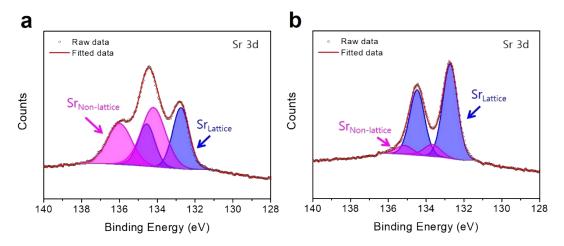
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)


Figure S1. Schematic diagrams of (a) the electrical conductivity relaxation process and (b) the isothermal reactor.


Figure S2. Oxygen partial pressure change upon a sudden change in the gas mixture flowing into the reactor; the gas was switched within 5 seconds, much faster than the electrical conductivity relaxation time.

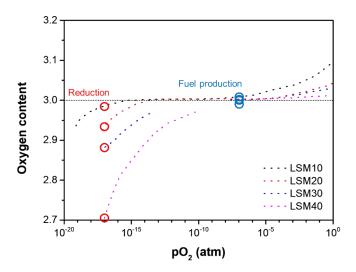

Figure S3. Raw conductivity relaxation profiles of La_{1-x}Sr_xMnO_{3- δ} (x = 0.2) along reducing and oxidizing directions for a pO₂ switch between 2.9 \times 10⁻¹⁵ atm and 1.5 \times 10⁻¹⁴ atm at 800°C using CO/CO₂. The relaxation profiles are almost identical, indicating that the pO₂ change is small enough to ensure that k_S values are identical along both directions and that the system response is linear.

Figure S4. Comparison of the k_S values of La_{1-x}Sr_xMnO_{3- δ} (x = 0.2) in the literature (opened) and in this study (closed). ²⁰ The values here are in agreement with those in the literature.

Figure S5. Sr 3d spectra of $La_{1-x}Sr_xMnO_{3-\delta}$ (x = 0.2) films (a) before and (b) after the removal of the outmost layers by chemical etching after the electrical conductivity relaxation measurements.

Figure S6. Oxygen content in $La_{1-x}Sr_xMnO_{3-\delta}$ (x = 0.1, 0.2, 0.3, 0.4) at 800°C. During the feasibility test of fuel production, cycling was performed between pO_2 levels of 1.0×10^{-17} atm (CO/CO₂ mixture) and 1.0×10^{-7} atm (CO₂). Reproduced from Ref. 9 with permission from The Royal Society of Chemistry.

(mol/mol LSM)

		D			F:1	•
Sr content		Powder			Films	
	La	Sr	Mn	La	Sr	Mn
0.1	0.77	0.11	1.12	0.83	0.10	1.07
0.2	0.69	0.19	1.12	0.73	0.20	1.07
0.3	0.60	0.29	1.11	0.68	0.29	1.03
0.4	0.51	0.39	1.10	0.57	0.39	1.04

Table S1. Inductively coupled plasma mass spectrometry (ICP-MS) composition analysis of the metal elements in the $La_{1-x}Sr_xMnO_{3-\delta}$ powders and films.

Su santant	Before/After chemical etching				
Sr content	La	Sr	Mn		
0.1	60.12/41.14	8.60/5.09	31.28/53.77		
0.2	46.89/37.13	16.38/10.20	36.70/52.64		
0.3	34.87/34.30	18.43/12.19	46.66/53.48		
0.4	39.26/30.97	17.71/16.18	43.00/52.85		

Table S2. Chemical composition of the surface of $La_{1-x}Sr_xMnO_{3-\delta}$ films before and after chemical etching as analyzed by X-ray photoelectron spectroscopy (XPS).