Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from

tobacco stalk via a sustainable method $\,$ †

Qingbo Wang^{‡ab}, Haishun Du^{‡ad}, Fang Zhang^c, Yuedong Zhang^a, Meiyan Wu^a, Guang Yu^a, Chao Liu^{*a}, Bin Li^{*a} and Hui Peng^a

a CAS Key Laboratory of Bio-based Material, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology,

Chinese Academy of Sciences, Qingdao, Shandong, 266101, China. Email: liuchao@qibebt.ac.cn; libin@qibebt.ac.cn.

^b Faculty of Modern Agricultural Engineering, Kunming University of science and technology, Kunming, 650504, China.

د National Engineering Research Center for Nanotechnology, Shanghai, 200241, China

^d Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA

[‡] Both authors contributed equally.

Fable S1 – Chemical composition of the samples							
Sample	Cellulose (%)	Hemicellulose (%)	Lignin (%)				
TS^a	40.5±0.6	16.5±0.1	24.3±0.2				
10AT ^b	56.5±0.5	14.8±0.3	21.7±0.2				
15AT ^c	57.9±0.5	14.2±0.1	15.6±0.4				
20AT ^d	60.4±0.3	13.5±0.7	14.0±0.6				
BT^e	73.1±0.2	17.4±0.4	0.1±0.1				
14F ^f	76.2±0.7	2.4±0.2	13.7±0.1				
$12F^{g}$	78.4±0.9	2.2±0.1	12.3±0.4				
10F ^h	83.7±0.4	1.4±0.3	10.3±0.5				
6F ^{<i>i</i>}	87.4±0.2	1.3±0.2	5.8±0.4				
3F ^j	89.7±0.1	0.9±0.7	3.4±0.2				
OF^k	95.3±0.4	0.2±0.1	0.1±0				

^{*a*} Tobacco stalk. ^{*b-d*} The cooked TS samples by the ammonium sulfite with the dose of 10, 15 and 20 wt% (based on the oven dried mass of TS). ^{*e*} Bleached TS samples. ^{*f-g*} The hydrolyzed TS samples by FA with the lignin contents of 13.7 and 12.3%, respectively. ^{*h-k*} The hydrolyzed 10AT, 15AT, 20 AT and BT samples by FA with the lignin contents of 10.3, 5.8, 3.4 and 0%, respectively.

Figure S1 - FTIR spectra of (1-9) TS, 20AT, BT, 14F, 3F, 0F, 14-CNFs, 3-CNFs and

0-CNFs samples.

Figure S2 - SEM images of (a) TS, (b) 20AT, (c) BT, (d) 14F, (e) 3F and (f) 0F samples.

Figure S3 - XRD pattern (a) and Crl (b) of TS, 20AT, BT, 14F, 3F and 0F samples.

3-CNP and 0-CNP samples						
Sample	T _{on} ^a	T _{max} ^b				
TS ^c	290	344				
20AT ^d	319	362				
BT ^e	320	357				
14F ^{<i>f</i>}	345	366				
$3F^{g}$	342	365				
0F ^h	338	364				
14-CNF ⁱ	308	339				
3-CNF ^j	304	339				
0-CNF ^k	299	339				
14-CNP [/]	332	360				
3-CNP ^m	327	359				
0-CNP ⁿ	318	361				

Table S2 – Ton and Tmax of TS, 20AT, BT, 14F, 3F, 0F 14-CNFs, 3-CNFs 0-CNFs, 14-CNP,

^{*a*} The onset temperature of thermal decomposition (°C). ^{*b*} The temperature of maximum decomposition (°C). ^{*c*} Tobacco stalk. ^{*d*} The cooked TS sample by ammonium sulfite with the dose of 20 wt% (based on the oven dried mass of TS). ^{*e*} Bleached sample. ^{*f*-*h*} The samples obtained by FA hydrolysis of TS, 20AT and BT. ^{*h*-*k*} CNF samples obtained after homogenization of 14F, 3F and 0F. ^{*l*-*n*} CNP fabricated by 14-CNF, 3-CNF and 0-CNF, respectively.

Figure S4 - TG and DTG of TS, 20AT, BT, 14F, 3F, 0F 14-CNFs, 3-CNFs 0-CNFs, 14-CNP, 3-CNP and 0-CNP samples.

Figure S5 - Dispersibility of (a) 14F, (b) 3F, (c) 0F, (d) 14-CNFs, (e) 3-CNFs and (F) 0-CNFs samples at

0 h, 10 min and 24 h.

Figure S6 - SEM cross-section images of 3-CNP, 6-CNP, 10-CNP and 12-CNP samples.

Figure S8 - Water-resisting performance of CNP samples fabricated from FA treated CNFs and TO-CNP.

Figure S9 - Haze performance of CNP samples. (a) Laser on, (b) Through 0-CNP

(c) Through 14-CNP.

Table S3 – Optical properties of CNP samples							
Comula			T (11)(D)c	Hered			
Sample	1 (VIS) ⁰	I(UVA) ⁶	I (UVB)	Haze			
0-CNP	87.27	80.68	76.34	74.21			
3-CNP	69.64	24.35	4.94	83.78			
6-CNP	60.68	6.15	0.08	89.78			
10-CNP	55.31	3.18	0.03	91.03			
12-CNP	50.60	1.91	0.03	95.27			
14-CNP	48.14	1.05	0.03	95.43			
TO-NP	92.29	89.10	84.37	8.16			

 o Transmittance of visible light (%). b Transmittance of UVA (%). c Transmittance of UVB(%). d Haze of CNP (%).