Electronic Supplementary Information (ESI):

'Casting' nanoporous nanowires: revitalizing the ancient process for

designing advanced catalysts

Ying Wang,¹ Tianyi Kou,² Hui Gao,¹ Jiazheng Niu,¹ Jie Zhang,¹ Lanfen Lv,¹ Zhangquan Peng,³ Zhonghua Zhang^{1,*}

¹Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P.R. China

²Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States

³State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China

*Corresponding author. Email: zh_zhang@sdu.edu.cn (Z. Zhang)

Figure S1. Photographs of (a) Al_{97.7}Ni₂Pd_{0.2}Pt_{0.1} alloy ingot, (b) Al_{97.7}Ni₂Pd_{0.2}Pt_{0.1} alloy ribbons, and (c) PdPtNi NPNWs catalyst after dealloying.

Figure S2. Al-Ni binary alloy phase diagram.¹

Figure S3. (a) XRD patterns and (b) magnified XRD patterns with the 2θ angle ranging from 21° to 55° of the Al_{97.8}Ni₂Pt_{0.2}, Al_{97.7}Ni₂Pd_{0.2}Pt_{0.1} and Al_{97.8}Ni₂Pd_{0.2} alloy ribbons.

Figure S4. (a-b) SEM images and (c) typical EDX spectrum of the PdPtNi NPNWs obtained by the two-step dealloying method. The corresponding compositions are listed in Figure S4c.

Figure S5. (a-b) SEM images and (c) typical EDX spectrum of the PtNi NPNWs obtained by the two-step dealloying method. The corresponding compositions are listed in Figure S5c.

Figure S6. (a-b) SEM images and (c) typical EDX spectrum of the PdNi NPNWs obtained by the two-step dealloying method. The corresponding compositions are listed in Figure S6c.

Figure S7. SEM image of the as-dealloyed Al₉₆Ni₄ sample after dealloying in 1 M NaOH solution. The sub-micron particles are highlighted by red arrows.

Figure S8. TEM images showing the microstructure of the PdPtNi NPNWs.

Figure S9. (a) XPS broad scan spectrum of the PdPtNi NPNWs catalyst. (b) XPS spectrum of Al 2p for the PdPtNi NPNWs catalyst.

Figure S10. CVs of the Pt/C and M (M=Pt, Pd or PdPt)-Ni NPNWs catalysts in the N₂-purged 0.5 M H_2SO_4 solution. (Scan rate: 50 mV s⁻¹)

	EGOR					
Sample	ref	j ecsa	$j_{ m mass}$	solution	Scan rate	
		(mA cm ⁻²)	(A mg ⁻¹)		(mV s ⁻¹)	
Our PdPtNi NPNWs		126	3.9	0.5 M EG + 0.5M KOH	50	
Our PtNi NPNWs		76	2.4	0.5 M EG + 0.5M KOH	50	
Our PdNi NPNWs		71	2.3	0.5 M EG + 0.5M KOH	50	
Pd55Pt30 nanowire networks	2	86	3.38	0.5 M EG + 0.5M KOH	50	
Pt77Cu54Co23hollow nanospheres	3	92	1.8	0.5M EG + 0.5M NaOH	50	
Pd ₆₂ Au ₂₁ Ni ₁₇ nanosponges	4	90	6.36	0.5M EG + 0.5M KOH	50	
PtPd multipods	5	72	~0.77	1.0M EG + 1.0M KOH	50	
PdPt nanodendrites	6	139	1.64	0.5M EG + 1.0M KOH	50	
PdCo nanodendrites	6	72	0.8	0.5M EG + 1.0M KOH	50	
PdNi nanodendrites	6	34	0.46	0.5M EG + 1.0M KOH	50	
PdAg/CNT	7		2.1	0.1M EG + 1.0M KOH	50	
SF-MWCNT-PdSn _{mix}	8	51.9		0.5M EG + 0.5M KOH	50	
PdAu HNT	9		4.6	0.5M EG + 0.5M KOH	50	
Ag@Pt core-shell nanospheres	10	120		0.75M EG + 1.0M KOH	50	
PtAg nanotubes	11		2.2	0.5M EG + 0.5M NaOH	50	
AuPt@Pt NCs/rGO	12		1.85	0.5M EG + 0.5M KOH	50	

 Table S1. Comparison of the EGOR activity of our NPNWs catalysts with those of

 previously reported state-of-the-art EGOR electrocatalyst.

	GOR						
Sample	ref	<i>j</i> ecsa	$j_{ m mass}$		Scan rate		
		(mA cm ⁻²)	(A mg ⁻¹)	solution	(mV s ⁻¹)		
Our PdPtNi NPNWs		48.2	1.5	0.1M Gly + 1.0M KOH	50		
Our PtNi NPNWs		21.4	0.69	0.1M Gly + 1.0M KOH	50		
Our PdNi NPNWs		35.9	1.15	0.1M Gly + 1.0M KOH	50		
Pd55Pt30 nanowire networks	2	46	1.8	0.1M Gly + 1.0M KOH	50		
PdCu nanocrystals	13	21.6		0.5M Gly + 0.5M KOH	50		
Porous Pd4Bi catalyst	14	~130	~0.75	0.1M Gly + 1.0M KOH	100		
Pd-CB	15		~1.15	0.5M Gly + 0.5M KOH	50		
Pd ₁ Sn ₁ nanoparticules	16		1.05	0.1M Gly + 1.0M KOH	20		
FeCo@Fe@Pd/MWCNT-COOH	17	11		0.5M Gly + 1.0M KOH	50		
PdAg CNT	18	43		0.1M Gly + 1.0M KOH	50		
PtAg NCs	19	77.9	1.3	0.5M Gly + 0.5M KOH	50		
PtAg nanotubes	11		1.58	0.5M Gly + 0.5M KOH	50		
Pd ₆₃ Ag ₃₇ nanocorals	20	6	1.6	0.5M Gly + 1.0M KOH	50		
CuPd nanowire networks	21	54	1.2	0.1M Gly + 1.0M KOH	50		
CuPt nanowire networks	21	45	1.05	0.1M Gly + 1.0M KOH	50		

Table S2. Comparison of the GOR activity of our NPNWs catalysts with those ofpreviously reported state-of-the-art GOR electrocatalyst.

References

- 1 K. Morsi, Mater. Sci. Eng., A, 2001, 299, 1-15.
- 2 W. Hong, C. Shang, J. Wang and E. Wang, *Energy Environ. Sci.*, 2015, **8**, 2910-2915.
- 3 W. Hong, C. Shang, J. Wang and E. Wang, *Nanoscale*, 2015, 7, 9985-9989.
- 4 S. Li, J. Lai, R. Luque and G. Xu, *Energy Environ. Sci.*, 2016, 9, 3097-3102.
- 5 J. J. Lv, L. P. Mei, X. Weng, A. J. Wang, L. L. Chen, X. F. Liu and J. J. Feng, *Nanoscale*, 2015, 7, 5699-5705.
- 6 J. N. Zheng, L. L. He, F. Y. Chen, A. J. Wang, M. W. Xue and J. J. Feng, J. Mater. Chem. A, 2014, 2, 12899-12906.
- 7 J. Qi, N. Benipal, C. Liang and W. Li, Appl. Catal., B, 2016, 199, 494-503.
- 8 T. Ramulifho, K. I. Ozoemena, R. M. Modibedi, C. J. Jafta and M. K. Mathe, *Electroanal. Chem.*, 2013, **692**, 26-30.
- 9 K. Cai, Y. Liao, H. Zhang, J. Liu, Z. Lu, Z. Huang, S. Chen and H. Han, ACS Appl. Mater. Interfaces, 2016, 8, 12792-12797.
- 10 J. N. Zheng, J. J. Lv, S. S. Li, M. W. Xue, A. J. Wang and J. J. Feng, *J. Mater. Chem. A*, 2014, **2**, 3445-3451.
- 11 Y. Kim, H. Kim and W. B. Kim, *Electrochem. Commun.*, 2014, 46, 36-39.
- 12 F. Q. Shao, X. X. Lin, J. J. Feng, J. Yuan, J. R. Chen and A. J. Wang, *Electrochim. Acta*, 2016, **219**, 321-329.
- 13 R. Wang, L. Y. Jiang, J. J. Feng, W. D. Liu, J. Yuan and A. J. Wang, *Int. J. Hydrogen Energy*, 2017, **42**, 6695-6704.

- 14 A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau and P. B. Atanassov, J. Am. Chem. Soc., 2014, 136, 3937-3945.
- 15 H. Wang, L. Thia, N. Li, X. Ge, Z. Liu and X. Wang, ACS Catal., 2015, 5, 3174-3180.
- 16 A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau and P. B. Atanassov, Appl. Catal., B, 2015, 176, 429-435.
- 17 O. O. Fashedemi, H. A. Miller, A. Marchionni, F. Vizza and K. I. Ozoemena, J. Mater. Chem. A, 2015, **3**, 7145-7156.
- 18 N. Benipal, J. Qi, Q. Liu and W. Li, Appl. Catal., B, 2017, 210, 121-130.
- 19 X. Weng, Q. Liu, A. J. Wang, J. Yuan and J. J. Feng, J. Colloid Interface Sci., 2017,494, 15-21.
- 20 P. Song, J. J. Feng, F. Y. Guo and A. J. Wang, J. Mater. Chem. A, 2015, 3 15920-15926.
- 21 W. Hong, J. Wang and E. Wang, *Nanoscale*, 2016, **8**, 4927-4932.