Tunable Pseudocapacitance Storage of MXene by Cation Pillaring for High-Performance Sodium Ion Capacitors

Jianmin Luo,^{a,b} Cong Fang,^a Chengbin Jin,^a Huadong Yuan,^a Ouwei Sheng,^a Ruyi Fang,^a

Wenkui Zhang,^a Hui Huang,^a Yongping Gan,^a Yang Xia,^a Chu Liang,^a Jun Zhang,^a Weiyang

Li,^{b,*} and Xinyong Tao^{a,*}

^a College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; ^b Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States

*Address correspondence to, Weiyang.Li@dartmouth.edu (W. Li), tao@zjut.edu.cn (X. Tao)

Fig. S1 Energy dispersive spectroscopy of (a) Ti₃C₂, (b) Li-Ti₃C₂, (c) Na-Ti₃C₂, (d) K-Ti₃C₂, (e) Na-Ti₃C₂-450, (f) Na-Ti₃C₂-700.

Fig. S2a (a-e) SEM image of Ti₃C₂ and elemental mapping of Ti, C, O and F, which confirm the homogeneously distribution of –OH and –F groups in all MXene sheets.

Fig. S2b (a-e) SEM image of Li-Ti₃C₂ and elemental mapping of Ti, C, O and F. After Li⁺ pillaring, the –F groups was replaced by –OH due to the decrease intensity of the F signal and the increase intensity of the O signal compared with those in Ti₃C₂, while the signal of Li can't be detected by EDS.

Fig. S2c (a-f) SEM image of Na-Ti₃C₂ and elemental mapping of Ti, C, O, F, and Na, which confirm the homogeneous distribution of Na in all MXene sheets. After Na⁺ pillaring, the -F groups was replaced by -OH due to the decrease intensity of the F signal and the increase intensity of the O signal compared with those in Ti₃C₂.

Fig. S2d (a-f) SEM image of K-Ti₃C₂ and elemental mapping of Ti, C, O, F, and K, which confirms the homogeneous distribution of K in all MXene sheets. After K⁺ pillaring, the –F groups was replaced by –OH due to the decrease intensity of the F signal and the increase intensity of the O signal compared with those in Ti₃C₂.

Fig. S2e (a-f) SEM image of Na-Ti₃C₂-450 and elemental mapping of Ti, C, O, F, and Na, which confirms the homogeneous distribution of Na in all MXene sheets after calcinations at 450 °C. The O signal decreased compared with Na-Ti₃C₂.

Fig. S2f (a-f) SEM image of Na-Ti₃C₂-700 and elemental mapping of Ti, C, O, F, and Na, which confirms the homogeneous distribution further of Na in all MXene sheets after calcinations at 700 °C. The O signal decreased further compared with Na-Ti₃C₂-450.

Fig. S3 (a, b) Surface wetting of the water droplet on the Li-Ti₃C₂, K-Ti₃C₂.

Fig. S4 The galvanostatic charge/discharge profiles of (a) Ti₃C₂, (b) Li-Ti₃C₂, (c) Na-Ti₃C₂, (d) K-Ti₃C₂, (e) Na-Ti₃C₂-450, and (f) Na-Ti₃C₂-700 at a current density of 0.1 A g⁻¹.

Fig. S5 CV curves of (a) Ti_3C_2 , (b) Li- Ti_3C_2 , (c) K- Ti_3C_2 , (d) Na- Ti_3C_2 -450, and (e) Na- Ti_3C_2 -700 at 0.1 mV s⁻¹.

Fig. S6 (a-c) CV curves of Li-Ti₃C₂, K-Ti₃C₂, and Na-Ti₃C₂-700 electrodes at different scan rates. (d-f) Capacitive and diffusion currents (blue) contributed to charge storage of Li-Ti₃C₂, K-Ti₃C₂, and Na-Ti₃C₂-700 at a scan rate of 2.0 mV s⁻¹. (g-i) The percentage of capacitance contribution of Li-Ti₃C₂, K-Ti₃C₂, and Na-Ti₃C₂-700 at different scan rates (0.1-2.0 mV s⁻¹).

Fig. S7 Ex situ XPS studies for the Ti_3C_2 . (a) The ex situ XPS spectra of the Ti 2p peaks to survey the changes in valence states of Ti during the sodiation and de-sodiation processes about Ti_3C_2 . (b) Voltage profiles of Ti_3C_2 in different states of sodiation/desodiation at which the samples were taken for ex situ XPS test. (c) The Ti 2p peaks of Ti_3C_2 samples at pristine state, 0.01 V discharge state, 3.0 V charge state.

Fig. S8 (a) The CV Curves of AC at different scan rates between 3.0-4.2V. (b) The charge-discharge curves of AC at 0.2 A g^{-1} between 3.0-4.2V. (c) The cycling performance of AC at 0.2 A g^{-1} between 3.0-4.2V.