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Fig. S1 The 1H NMR spectrum and digital photo of the DPM/DMBP-TB copolymer.

1H NMR (400 MHz, CDCl3 δ): 7.16 (s, 2H, Ar H), 7.05 (d, J = 7.6 Hz, 2H, Ar H), 6.95 (s, 2H, 

Ar H), 6.85 (d, 2H, J = 7.6 Hz, Ar H), 6.70 (s, 2H, Ar H), 4.62 (m, 4H, CH2), 4.28 (s, 4H, 

CH2), 4.06 (m, 4H, CH2), 3.71(m, 2H, CH2), 2.42(d, 6H, CH3).

The peak emerging from δ = 6.70 − 7.16 is in response to the characteristic aromatic protons 

on the benzene ring. The signal at δ = 2.42 is associated with the protons of methyl on the 

benzene rings (Ar−CH3) that comes from monomer 4,4’-diamine-3,3’-dimethyl-biphenyl 

(DMBP). The signal at δ = 3.71 is attributed to the methylene group between two benzene 

rings (Ar−CH2−Ar) which is associated with monomer 4,4’-Diaminodiphenylmethane (DPM).
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Fig. S2 The 1H NMR spectrum and digital photo of the Br-QA. 

1H NMR (400 MHz, D2O, δ): 1.37 (h, J = 7.2, 6.5 Hz, 2H, CH2), 1.47 (m, 2H, CH2), 1.60 (m, 

2H, CH2), 1.76 (m, 2H, CH2), 1.85 (p, J = 6.8 Hz, 2H, CH2), 3.07 (s, 9H, CH3), 3.28 (m, 2H, 

CH2), 3.48 (t, J = 6.7 Hz, 2H, CH2).

The peak at δ = 3.07 (s, 9H, CH3) is associated with the quaternary ammonium groups from 

trimethylamine. The single at δ = 1.37 − 1.85 ppm is attributed to alkyl chain from DHB.
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Fig. S3 The 13C NMR spectrum of the Br-QA.

13C NMR (400 MHz, DMSO-d6): δ (ppm) 65.40, 52.48, 35.57, 32.35, 27.44, 25.29, 22.39.
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Fig. S4 The 15N NMR spectrum of Br-QA.

15N NMR (600 MHz, D2O): δ (ppm) 48.77
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Fig. S5 FT-IR spectrum of the Br-QA at 25 °C (KBr).

FT-IR (KBr): v (cm–1) 3494, 3446, 3006, 2952, 2859, 1632, 1484, 1457, 1417, 1401, 1362, 

1301, 1285, 1255, 1223, 1077, 1052, 1033, 972, 951, 916, 866, 823, 812, 751, 737, 639, 551, 

533, 517, 492, 453.
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Fig. S6 The 1H NMR spectrum in D2O and digital photo of the N, N-DQA. 

1H NMR (400 MHz, D2O δ): 1.30 (m, 2H, CH2), 1.40 (m, 8H, CH2), 1.72 (m, 6H, CH2), 2.12 

(s, 6H, CH3), 2.27 (m, 2H, CH2), 2.98 (s, 6H, CH3), 3.05 (s, 9H, CH3), 3.25 (m, 6H, CH2).

Compared with the spectrum of the Br-QA, the peak at δ = 3.48 (t, J = 6.7 Hz, 2H, CH2) 

disappeared. Subsequently, there were two new peaks emerged at δ = 2.12 (s, 6H, CH3) and δ 

= 2.27 (m, 2H, CH2).
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Fig. S7 The 13C NMR spectrum of the N, N-DQA.

13C NMR (400 MHz, DMSO-d6): δ (ppm) 65.42, 63.46, 63.23, 59.34, 52.61, 50.37, 45.58, 

27.19, 26.78, 26.18, 25.59, 22.24, 21.94.
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Fig. S8 The 15N NMR spectrum of the N, N-DQA. 

15N NMR (600 MHz, D2O): δ (ppm) 52.27, 48.61, 29.45
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Fig. S9 FT-IR spectrum of the N, N-DQA at 25 °C (KBr).

FT-IR (KBr): v (cm–1) 3440, 3001, 2936, 2852, 2817, 2781, 2764, 1782, 1629, 1485, 1467, 

1422, 1402, 1379, 1354, 1300, 1258, 1223, 1209, 1172, 1158, 1103, 1062, 1042, 974, 951, 

918, 850, 803, 730, 530, 453.
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Fig. S10 The 1H NMR spectrum and digital photo of the Br-TQA.

1H NMR (400 MHz, DMSO-d6 δ): 1.30 (m, 10H, CH2), 1.45 (m, 2H, CH2), 1.72 (m, 10H, 

CH2), 1.80 (m, 2H, CH2), 3.04 (s, 6H, CH3), 3.06 (s, 6H, CH3), 3.10 (s, 9H, CH3), 3.3 (m, 

10H, CH2), 3.57 (t, J = 6.7 Hz, 2H, CH2).

Compared with the spectrum of the N, N-DQA, the single at δ = 2.27 (t, 2H, CH2) 

disappeared. Subsequently, the peak at δ = 3.57 (t, J = 6.7 Hz, 2H, CH2) appeared again. 

Furthermore, the three peaks located at δ = 3.04 − 3.10 (s, 21H, CH3) corresponded to three 

quaternary ammonium groups which indicated that the target product was successfully 

synthesized. 
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Fig. S11 The 13C NMR spectrum of the Br-TQA.

13C NMR (400 MHz, DMSO-d6): δ (ppm) 65.36, 63.23, 52.54, 50.42, 35.63, 32.37, 27.47, 

25.59, 25.53, 22.21, 21.94.
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Fig. S12 The 15N NMR spectrum of the Br-TQA.

15N NMR (600 MHz, D2O): δ (ppm) 54.17, 50.01, 48.44
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Fig. S13 FT-IR spectrum of Br-TQA at 25 °C (KBr).

FT-IR (KBr): v (cm–1) 3454, 3009, 2947, 2857, 2694, 2067, 1726, 1620, 1487, 1467, 1419, 

1402, 1353, 1315, 1277, 1254, 1133, 1062, 1010, 967, 950, 914, 803, 731, 637, 554, 510, 453.
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Fig. S14 The 1H NMR spectrum and digital photo of the DPM/DMBP-QTB copolymer.

Apparently, compared with the spectrum of the DPM/DMBP-QTB, the signal at δ = 3.04 − 

3.10 (m, 21H, CH3) are attributed to the quaternary ammonium groups from Br-TQA. The 

peaks located at δ = 1.33 − 1.70 (m, 24H, CH2) were associated with the alkyl chain. 
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Fig. S15 The 1H NMR spectrum and digital photo of the BQB.

1H NMR (400 MHz, DMSO-d6, δ): 1.30 (m, 8H, CH2), 1.45 (dq, J = 9.0, 7.2 Hz 4H, CH2), 

1.69 (m, 8H, CH2), 1.83 (dt, J = 14.8, 6.8 Hz 4H, CH2), 3.03 (s, 12H, CH3), 3.28 (dt, J = 12.8, 

4.6 Hz, 8H, CH2), 3.55 (t, J = 6.7 Hz, 4H, CH2)
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Fig. S16 The 13C NMR spectrum of the BQB.

13C NMR (400 MHz, DMSO-d6): δ (ppm) 63.29, 50.37, 35.58, 32.38, 27.48, 25.59, 25.35, 

22.10, 21.94.
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Fig. S17 The 15N NMR spectrum of the BQB.

15N NMR (600 MHz, D2O): δ (ppm) 51.92.
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Fig. S18 FT-IR spectrum of the BQB at 25 °C (KBr).

FT-IR (KBr): v (cm–1) 3454, 3009, 2947, 2857, 2694, 2067, 1726, 1620, 1487, 1467, 1419, 

1402, 1353, 1315, 1277, 1254, 1133, 1062, 1010, 967, 950, 914, 803, 731, 637, 554, 510, 453.

Fig. S19 The preparation process of the crosslinked DPM/DMBP-QTB AEMs.
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Fig. S20 FT-IR spectra of the crosslinked DPM/DMBP-QTB AEMs. 

The broad vibration bands at 3420 cm-1 is contributed to –OH groups that comes from the 

bound water.[1] The strong single peak near 2950 cm-1 is associated with the Stretching 

vibration of –CH2– group.[2] The peaks at 1662 cm-1 is the bending vibration of benzene ring. 

In addition, the peaks at 1329 cm-1 and 1101 cm-1 are assigned to the C−N and C−N+ groups, 

respectively.[3−5]
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Fig. S21 FT-IR spectra of the crosslinked DPM/DMBP-QTB AEMs and BQB.
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Fig. S22 The water contact angles of the crosslinked DPM/DMBP-QTB AEMs at 25 °C.

Fig. S23 3D AFM surface topographic of the DPM/DMBP-QTB-1.0 (a) / 2.0 (b) membranes.
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Fig. S24 AFM phase images of the membrane DPM/DMBP-QTB-1.0 (a) /2.0 (b).
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Fig. S25 The activation energy (Ea) of the crosslinked DPM/DMBP-QTB AEMs. 

The relationship between the conductivity and temperature can be measured by Ea. The Ea 

for ionic transport can be caculated by Arrhenius equation ( ), where σ is the 
𝐿𝑛𝜎= 𝐿𝑛𝜎0 ‒

𝐸𝑎
𝑅𝑇

conductivity of membrane,  is the frequency factor which is independent of temperature, R 𝜎0
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is the universal gas constant (8.314 J mol−1 K−1) and T is the absolute temperature.[6]
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Fig. S26 The solid state 13C NMR spectra for the DPM/DMBP-QTB-1.5 membrane before 

and after alkaline ability test.

The 13C Cross polarization/magic angle spinning (13C CP/MAS) solid state spectra were 

recorded on a Bruker Advance III 400 spectrometer. The signals around 128 ppm correspond 

to carbon of benzene. The peak at 75 ppm is ascribed to ―N+―CH2―N― in the backbone. 

The peaks around 63 ppm are associated with the ―N+―CH2― groups in the side chain. The 

peak located at 55 ppm is contribute to the ―N―CH2―Ar groups. The peak at 52 ppm is 

ascribed to ―(CH3)2N+― groups. 
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Fig. S27 The mechanical properties of the DPM/DMBP-QTB-1.5 membrane before and after 

alkali resistance test. 
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Fig. S28 The water uptake and swelling ratio of the DPM/DMBP-QTB-1.5 membrane before 

and after alkali resistance test. 
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Fig. S29 The conductivity, stability factor and IEC of DPM/DMBP-QTB-1.5 and other cross-

linked AEMs reported recently.7-16 The hollow symbols and solid symbols represent the 

stability factor and conductivity, respectively.
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