Supporting Information for

FeO_x/FeP Hybrid Nanorods Neutral Hydrogen Evolution Electrocatalysis: Insight into Interface

Jianwen Huang,^{†a} Ying Su,^{†b} Yadong Zhang,^{†c} Wenqi Wu,^b Chunyang Wu,^a Yinghui

Sun,*b Ruifeng Lu,^c Guifu Zou,*b Yanrong Li,^a Jie Xiong*a

^aState Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China

*E-mail: jiexiong@uestc.edu.cn

^bSoochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy, Institute of Chemical Power Sources & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China

*E-mail: <u>yinghuisun@suda.edu.cn</u>; <u>zouguifu@suda.edu.cn</u>

^cDepartment of Applied Physics, Nanjing University of Science and Technology,

Nanjing 210094, China

Experimental Section

FeOOH NRs/CC synthesis: The FeOOH NRs/CC was prepared by a simple hydrothermal method. 1 mmol FeCl₃ and 1 mmol Na₂SO₄ were dissolved in 30 ml deionized water. After sonication for 10 min, the yellow solution was transferred into a 50 mL Teflon-lined stainless autoclave. Then a piece of treated carbon cloth (1 cm \times 4 cm) was immersed into the solution. The autoclave was sealed and maintained at 120 °C for 5 h in an electric oven. When the reaction was over, the sample was taken out and washed with water and ethanol for several times followed by drying in air.

Fe-O-P NRs/CC synthesis: The low-temperature phosphorizing was conducted with FeOOH NRs/CC and NaH₂PO₂ (about 0.8 g) as precursors. The boat with NaH₂PO₂ was put at the upstream side of the furnace. Then the sample was annealed at 300 °C for about 40 min in Ar/H₂ atmosphere. After the temperature cooled down, the Fe-O-P NRs/CC was obtained. When the Fe-O-P NRs/CC sample was treated by 1 M HCl solution for several minutes, the Fe-O-P-A NRs/CC was obtained.

Characterizations: The morphology was characterized by scanning electron microscopy (SEM) measurements (HITACHI SU8010). Transmission electron microscopy (TEM) measurements were performed on a FEI Tecnai G2 F20 microscope at 200 kV. The crystal structure was analyzed by D/MAX-2000 PC powder X-Ray diffractometer (XRD) with Cu K α radiation (λ =1.54056 Å). X-Ray photoelectron spectroscopy (XPS) analyses were performed on a Japan Kratos Axis Ultra HAS spectrometer with a monochromatic Al K α source.

Electrochemical measurement: The electrochemical measurements were performed in a typical three-electrode system with Ag/AgCl electrode as the reference electrode and graphite rod as the counter electrode by using CHI 604E electrochemical analyzer (CH Instruments, Inc., Shanghai). All measurements were performed directly under room temperature with N₂ saturated solutions (1 M PBS, 0.5 M H₂SO₄, 1 M KOH). The exposed active area for measurement was 0.5 cm \times 0.5 cm. The linear scanning voltammetry (LSV) was conducted at a scan rate of 5 mV s⁻¹. Before LSV test, 20 cyclic voltammetry (CV) cycles were carried out at a scan rate of 100 mV s⁻¹ to achieve a stable current. The double layer capacitance (C_{dl}) was estimated by measuring the CV under different scan rates in non-faradic region of 0.1-0.2 V. The C_{dl} value is equal to half of the linear slope. All potentials used in this work are marked with or without iR correction, which are given versus reversible hydrogen electrode (RHE) according to the following equation: $E_{RHE} = E_{Ag/AgCl} + 0.197 + 0.059 \times pH(V)$.

Theoretical calculations: Using spin-polarized density functional theory (DFT) with generalized gradient approximation (GGA) for exchange-correlation potential, we have calculated the total energies and atomic structure of the chosen system.^{1,2} All calculations were performed by using Perdew-Burke-Ernzerhof (PBE) form of the GGA functional embedded in the Vienna Ab Initio Simulation Package (VASP).³ The cutoff energy of the plane-wave basis set was set at 500 eV. In order to avoid interaction between periodic surface layers, a vacuum space of 10 Å along the *z*-direction was applied. The Brillouin zone integrations were performed by using Monkhorst-Pack $7 \times 7 \times 7$ and $3 \times 3 \times 1$ for geometric optimization of the bulk FeP and the other slab

surfaces, respectively. The convergence thresholds for structural optimization and transition state (TS) search were set at 0.01 and 0.05 eV/Å in force, respectively.⁴ The convergence criterion for energy is 10^{-5} eV. The van der Waals (vdW) dispersion by employing the D3 method of Grimme was considered for all the calculation.⁵ The climbing image nudged elastic band (CI-NEB) method was used to search the TSs and five images inserted between two stable states.⁶ The total hydrogen evolution reaction can be written in Eq. (1).

$$e^- + H^+ \rightarrow \frac{1}{2}H_2 \tag{1}$$

For each step, the reaction Gibbs free energy ΔG is defined by Eq. (2).

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{2}$$

where ΔE is the electronic energy difference, ΔZPE is the change in zero-point energies, T is the temperature (T = 298.15 K), and ΔS is the entropy change. The zero-point energy of adsorbed atomic hydrogen was computed from the vibrational frequencies, in which only the adsorbated species were calculated, while the catalysts were all fixed.⁷ The entropy of adsorption of $1/2H_2$ is $\Delta S_H \approx -\frac{1/2S_{H_2}^0}{2}$, where $S_{H_2}^0$ is the entropy of H₂ in the gas phase at standard conditions.

Figure S1. XRD pattern of FeOOH NRs/CC. Inset is the corresponding SEM image.

Figure S2. The HRTEM images of FeOOH NRs (a) and Fe-O-P NRs (b). Inset in (a) shows the magnified crystal lattice. Insets in (b) show the FFT patterns of corresponding crystalline or amorphous areas.

Figure S3. Structure comparison. The SEM (a) and TEM (c) images of Fe-O-P NRs. The SEM (b) and TEM (d) images of Fe-O-P-A NRs. Insets: the low magnification images.

Figure S4. The HRTEM images of Fe-O-P-A NRs.

Figure S5. HRTEM and STEM line scan analyses of Fe-O-P interface. (a) The STEM-HAADF image. (b) Corresponding HRTEM image from marked area in a. (c) Line scan elemental analyses.

Figure S6. The EDX elemental analyses of Fe-O-P NRs and Fe-O-P-A NRs

Figure S7. XPS survey of Fe-O-P-A NRs/CC. (a) XPS survey for elements. (b) Fe 2p, (c) P 2p and (d) O 1s spectra of Fe-O-P-A NRs/CC. A clear Fe $2p_{3/2}$ shift is observed from 707.2 to 707.4 eV after acid treatment.

Figure S8. The Nyquist plots of Fe-O-P NRs and Fe-O-P-A NRs.

Figure S9. The double-layer capacitance measurements for determining the electrochemical active surface area. CV curves for (a) FeOOH NRs/CC, (b) Fe-O-P NRs/CC and (c) Fe-O-P-A NRs/CC measured at different scan rates in 1 M PBS, respetively.

Figure S10. The polarization curves of Fe-O-P NRs/CC during 60 h electrolysis.

Figure S11. Comparison of XRD patterns before and after electrolysis.

Figure S12. The SEM image of Fe-O-P NRs/CC after electrolysis.

Figure S13. The *I-t* measurement of Fe-O-P-A NRs/CC electrode for 6 h electrolysis.

Figure S14. The SEM images of Fe-O-P-A NRs/CC after 6 h electrolysis. Inset: corresponding low magnification image.

Catalyst	Tafel slope (mV dec ⁻¹)	η ₁₀ (mV)	Stability	Reference
Fe-O-P NRs	47	96	60 h	This work
Fe-O-P-A NRs	72	93	6 h	This work
N-Ni	106	64	18 h	J. Am. Chem. Soc., 2017 , 139, 12283–12290
CoP foam/Hb	106	121	100 h	Nano Res. 2017 , 10, 1010–1020
Ni-C-N NSs	38	92.1	70 h	J. Am. Chem. Soc. 2016 , 138, 14546–14549
SiO ₂ /PPy NTs-CFs	100.2	187	30 h	Angew. Chem. Int. Ed. 2017, 56, 8120–8124
PtSA-NT-NF	30	24	24 h	Angew. Chem. Int. Ed. 2017, 56, 13694–13698
Ni ₃ S ₂ /NF	-	170	200 h	J. Am. Chem. Soc. 2015, 137, 14023–14026
FeP/Ti foil	-	102	16 h	ACS Nano. 2014 , 8, 11101–11107
FeP NP/CC	70	115	22 h	ACS Appl. Mater. Interfaces 2014 , 6, 20579–20584
Zn _{0.30} Co _{2.70} S ₄	-	90	210 min	J. Am. Chem. Soc. 2016 , 138, 1359–1365
NiCo ₂ P _x	63.3	63	30 h	Adv. Mater. 2017 , 29, 1605502
MoP NA/CC	94	187	46 h	<i>Applied Catal. B</i> Environ. 2016 , 196, 193–198
Co-S/FTO	93	160	40 h	J. Am. Chem. Soc. 2013 , 135, 17699–17702
CoMoS ₄ NTA/CC	77	104	32 h	<i>Chem. Eur. J.</i> 2017 , 23,12718–12723
Mo ₂ C@NC	-	156	-	Angew. Chem. Int. Ed. 2015, 54, 10752–10757
FeP NAs	71	202	-	<i>ACS Catal.</i> 2014 , 4, 4065–4069

Table S1. The activity comparison of Fe-O-P NRs/CC with recently reported HER electrocatalysts in neutral media.

Video S1. Electrolytic hydrogen evolution in neutral media with the Fe-O-P NRs/CC electrode.

Note S1. Calculation for the exchange current density (j_0)

Tafel relationship illustrates the catalytic activity of electrode material for hydrogen evolution reaction:

$$\eta = b \log(\frac{j}{j_0}) \tag{1}$$

where η is the overpotential, *b* is the Tafel slope related to the catalytic mechanism of the electrode reaction, *j* is the current density. j_0 is the exchange current density, calculated when $\eta = 0$, which describes the intrinsic catalytic activity of electrode material under the equilibrium conditions.^{8,9} The calculated Tafel slope of Fe-O-P NRs is 47 mV dec⁻¹ in 1 M PBS. The j_0 of Fe-O-P NRs is computed when j = 10 mA cm⁻² and the corresponding $\eta = 96$ mV. Then j_0 can be obtained according to:

$$j_0 = \frac{j}{10^{\eta/b}} = \frac{10}{10^{96/47}} = 0.091 \, mA \, cm^{-2}$$
(2)

Reference

- 1 G. Kresse and J. Hafner, *Phys. Rev. B*, **1993**, 47, 558–561.
- 2 G. Kresse and D. Joubert, *Phys. Rev. B*, **1999**, 59, 1758–1775.
- 3 G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15–50.
- 4 H. J. Monkhorst, *Phys. Rev. B*, **1976**, 13, 5188–5192.
- 5 S. Grimme, J. Chem. Phys., 2010, 132, 154104–154119.
- 6 G. Henkelman, J. Chem. Phys., 2000, 113, 9901–9904.

- 7 Q. Tang and D. Jiang, ACS Catal., 2016, 6, 4953–4961.
- 8 Y. Shi and B. Zhang, *Chem. Soc. Rev.* **2016**, 45, 1529–1541.
- 9 X. Zou and Y. Zhang, *Chem. Soc. Rev.* **2015**, 44, 5148–5180.