Supplementary Information

High oxide-ion conductivity by the overbonded channel oxygens in Si-deficient La_{9.565}(Si_{5.826}, 0.174)O₂₆ apatite without interstitial oxygens

Kotaro Fujii,^a Masatomo Yashima,^{a,*} Keisuke Hibino,^a Masahiro Shiraiwa,^a Koichiro Fukuda,^b Susumu Nakayama,^c Nobuo Ishizawa,^d Takayasu Hanashima^e and Takashi Ohhara^f

^a Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
^b Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

^c Department of Applied Chemistry and Biotechnology, National Institute of Technology, Niihama College, Niihama 792-8580, Japan

^d Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi, 507-0033, Japan
 ^e Research Center for Neutron Science and Technology, CROSS, Tokai, Ibaraki 319-1106, Japan
 ^f Neutron Science and Technology Center, CROSS, Tokai, Ibaraki 319-1106, Japan

Author for correspondence:

Masatomo Yashima. E-mail: yashima@cms.titech.ac.jp; Tel/ Fax: +81-3-5734-2225

(A) Results of the structure analysis of the single crystal time-of-flight neutrondiffraction data of La_{9.333}Si₆O₂₆ and La_{9.565}(Si_{5.826} $\Box_{0.174}$)O₂₆. Details of single-crystal Xray diffraction experiments of La_{9.565}(Si_{5.826} $\Box_{0.174}$)O₂₆.

Table S1. Atomic Coordinates and Atomic Displacement Parameters Refined Using the Single-Crystal Neutron-Diffraction Data of La_{9.333}Si₆O₂₆, Based on the Structure Model with O3 and O4 Non-Split Sites and without Interstitial Oxygens.

Site	Wyckoff position	g	x	у	Z	$U_{ m eq}({ m \AA}^2)$
La1	4f	0.8325	1/3	2/3	-0.0014(3)	0.0122(4)
La2	6h	1	0.01390(11)	0.24385(11)	1/4	0.0074(4)
Si	6h	1	0.4012(2)	0.3713(2)	1/4	0.0068(7)
01	6h	1	0.3228(2)	0.4840(2)	1/4	0.0189(7)
O2	6h	1	0.59348(17)	0.47182(18)	1/4	0.0134(5)
03	12 <i>i</i>	1	0.34499(19)	0.25432(15)	0.06959(18)	0.0252(6)
O4	2a	1	0	0	1/4	0.0243(9)
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	$U_{23}({ m \AA}^2)$
La1	0.0054(5)	$= U_{11}$	0.0259(9)	$= U_{11}/2$	0	0
La2	0.0062(5)	0.0076(5)	0.0071(5)	0.0025(4)	0	0
Si	0.0062(8)	0.0087(8)	0.0062(9)	0.0041(7)	0	0
01	0.0247(8)	0.0249(8)	0.0186(9)	0.0211(7)	0	0
O2	0.0070(7)	0.0100(7)	0.0188(8)	0.0010(5)	0	0
03	0.0502(9)	0.0139(6)	0.0110(6)	0.0158(6)	-0.0148(5)	-0.0050(4)
O4	0.0114(8)	$= U_{11}$	0.050(2)	$= U_{11}/2$	0	0

g : Occupancy factor. U_{eq} : Equivalent isotropic atomic displacement parameter. U_{ij} : Anisotropic atomic displacement parameters. R_1 : 0.0759, wR_2 : 0.0967, $\Delta \rho_{max} / \Delta \rho_{min}$: 0.60 / -0.64 fm Å⁻³

Table S2 (Same as Table 2 in the main text). Atomic Coordinates and Atomic Displacement Parameters Refined Using the Single-Crystal Neutron-Diffraction Data of La_{9.333}Si₆O₂₆, Based on the Structure Model with O3a and O3b Split Sites, with O4 Non-Split Site and without Interstitial Oxygens (Final Refinement of Neutron Data of La_{9.333}Si₆O₂₆).

Site	Wyckoff position	g	x	у	Z	$U_{ m eq}$ (Å ²)	BVS
Lal	4f	0.8325	1/3	2/3	-0.0012(2)	0.0126(4)	2.95
La2	6h	1	0.01378(10)	0.24380(10)	1/4	0.0076(4)	2.83
Si	6h	1	0.4013(2)	0.3713(2)	1/4	0.0066(6)	3.98
01	6h	1	0.32295(19)	0.48410(19)	1/4	0.0190(6)	1.95
02	6h	1	0.59363(16)	0.47196(16)	1/4	0.0135(5)	2.03
O3a	12 <i>i</i>	0.82(2)	0.3512(8)	0.2557(2)	0.0668(4)	0.0134(11)	1.90
04	2a	1	0	0	1/4	0.0251(8)	2.09
O3b	12 <i>i</i>	0.18 = (1-g(O3a))	0.297(2)	0.2438(8)	0.0906(13)	U _{iso} 0.007(3)	1.99
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	U_{23} (Å ²)	
La1	0.0062(4)	$= U_{11}$	0.0253(8)	$= U_{11}/2$	0	0	
La2	0.0065(4)	0.0079(5)	0.0068(5)	0.0025(3)	0	0	
Si	0.0063(8)	0.0071(8)	0.0063(8)	0.0033(6)	0	0	
01	0.0251(8)	0.0246(8)	0.0189(8)	0.0212(7)	0	0	
O2	0.0067(6)	0.0101(6)	0.0190(7)	0.0006(5)	0	0	
O3a	0.021(2)	0.0131(7)	0.0066(8)	0.0093(8)	-0.0043(9)	-0.0026(5)	
04	0.0122(8)	$= U_{11}$	0.051(2)	$= U_{11}/2$	0	0	

BVS : Bond valence sum. R_1 : 0.0669, wR_2 : 0.0891, $\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$: 0.52 / -0.56 fm Å⁻³

Table S3. Atomic Coordinates and Atomic Displacement Parameters Refined Using the Single-Crystal Neutron-Diffraction Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆, Based on the Si-Vacancy Model with O3 and O4 Non-Split Sites and without Interstitial Oxygens.

Site	Wyckoff position	g	x	у	Z	$U_{ m eq}({ m \AA}^2)$
La1	4f	0.8912	1/3	2/3	-0.0011(2)	0.0121(4)
La2	6 <i>h</i>	1	0.01213(11)	0.23940(11)	1/4	0.0095(4)
Si	6h	0.971	0.4032(2)	0.3729(2)	1/4	0.0052(7)
01	6 <i>h</i>	1	0.3251(2)	0.4862(2)	1/4	0.0186(7)
O2	6 <i>h</i>	1	0.59581(16)	0.47289(16)	1/4	0.0141(6)
O3	12 <i>i</i>	1	0.34826(17)	0.25701(14)	0.0686(2)	0.0247(6)
O4	2a	1	0	0	1/4	0.080(3)
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	$U_{23}({ m \AA}^2)$
La1	0.0083(4)	$= U_{11}$	0.0199(9)	$= U_{11}/2$	0	0
La2	0.0066(5)	0.0099(5)	0.0110(6)	0.0034(4)	0	0
Si	0.0053(8)	0.0057(8)	0.0057(12)	0.0035(7)	0	0
01	0.0262(8)	0.0234(8)	0.0172(11)	0.0206(7)	0	0
O2	0.0076(6)	0.0101(7)	0.0210(10)	0.0018(5)	0	0
03	0.0473(8)	0.0148(6)	0.0137(8)	0.0168(5)	-0.0156(5)	-0.0055(4)
04	0.0119(10)	$= U_{11}$	0.217(8)	$= U_{11}/2$	0	0

 $R_1: 0.0727, wR_2: 0.1032, \Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}: 0.65 / -0.59 \text{ fm Å}^{-3}$

Table S4. Atomic Coordinates and Atomic Displacement Parameters Refined Using the Single-Crystal Neutron-Diffraction Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆, Based on the Si-Vacancy Model with O3a and O3b Split Sites, with O4 Non-Split Site and without Interstitial Oxygens.

Site	Wyckoff position	g	x	у	Z	$U_{ m eq}({ m \AA}^2)$
La1	4f	0.8912	1/3	2/3	-0.0010(2)	0.0123(4)
La2	6h	1	0.01209(10)	0.23940(10)	1/4	0.0095(4)
Si	6h	0.971	0.40314(19)	0.37290(19)	1/4	0.0054(7)
01	6 <i>h</i>	1	0.32502(19)	0.48627(18)	1/4	0.0184(6)
O2	6h	1	0.59583(15)	0.47288(15)	1/4	0.0144(5)
O3a	12 <i>i</i>	0.84(2)	0.3529(7)	0.2581(2)	0.0665(4)	0.0151(11)
O4	2a	1	0	0	1/4	0.078(3)
O3b	12 <i>i</i>	0.16 = (1-g(O3a))	0.298(2)	0.2447(9)	0.0927(15)	U _{iso} 0.007(3)
	0 -	0 -	0 -	0 -	0 -	0 -
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	U_{33} (Å ²)	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	U_{23} (Å ²)
La1	0.0085(4)	$= U_{11}$	0.0199(9)	$= U_{11}/2$	0	0
La2	0.0071(4)	0.0099(5)	0.0105(6)	0.0035(3)	0	0
Si	0.0050(8)	0.0062(8)	0.0060(11)	0.0036(6)	0	0
01	0.0263(8)	0.0232(7)	0.0171(10)	0.0210(7)	0	0
O2	0.0078(6)	0.0101(6)	0.0218(9)	0.0019(5)	0	0
03	0.024(2)	0.0140(7)	0.0092(9)	0.0111(8)	-0.0067(10)	-0.0037(5)
O4	0.0129(10)	$= U_{11}$	0.208(8)	$= U_{11}/2$	0	0

 $R_1: 0.0624, wR_2: 0.0968, \Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}: 0.78 / -0.61 \text{ fm Å}^{-3}$

Table S5. Atomic Coordinates and Atomic Displacement Parameters Refined Using the Single-Crystal Neutron-Diffraction Data of La_{9.565}(Si_{5.826} \square _{0.174})O₂₆, Based on the Si-Vacancy Model with O3 Non-Split Site, with O4a and O4b Split Sites and without Interstitial Oxygens.

Site	Wyckoff position	g	x	у	z	$U_{ m eq}$ (Å ²)
La1	4f	0.8912	1/3	2/3	-0.0011(2)	0.0124(4)
La2	6 <i>h</i>	1	0.01213(11)	0.23936(11)	1/4	0.0094(4)
Si	6 <i>h</i>	0.971	0.4032(2)	0.3729(2)	1/4	0.0052(7)
01	6 <i>h</i>	1	0.3250(2)	0.48611(19)	1/4	0.0186(7)
O2	6 <i>h</i>	1	0.59575(16)	0.47293(16)	1/4	0.0142(6)
O3	12 <i>i</i>	1	0.34812(17)	0.25692(14)	0.0685(2)	0.0248(5)
O4a = O4	2a	0.68(3)	0	0	1/4	0.031(4)
O4b	4e	0.16 = (1-g(O4a))/2	0	0	0.144(5)	=O4
	° •	° •	° -	0	° •	0.0
Site	U_{11} (A ²)	$U_{22} (A^2)$	$U_{33} (A^2)$	U_{12} (A ²)	$U_{13}(A^2)$	$U_{23} (A^2)$
La1	0.0083(4)	$= U_{11}$	0.0207(9)	$= U_{11}/2$	0	0
La2	0.0066(5)	0.0100(5)	0.0106(6)	0.0033(4)	0	0
Si	0.0054(8)	0.0059(8)	0.0058(11)	0.0038(7)	0	0
01	0.0258(8)	0.0233(8)	0.0173(11)	0.0203(7)	0	0
O2	0.0078(6)	0.0104(7)	0.0212(10)	0.0021(5)	0	0
03	0.0474(8)	0.0149(5)	0.0138(8)	0.0170(5)	-0.0155(5)	-0.0056(4)
O4a, O4b*	0.0108(11)	$= U_{11}$	0.071(12)	$= U_{11}/2$	0	0

* $U_{ij}(O4a) = U_{ij}(O4b), R_1 : 0.0716, wR_2 : 0.1024, \Delta \rho_{max} / \Delta \rho_{min} : 0.48 / -0.45 \text{ fm } \text{\AA}^{-3}$

Table S6 (Same as Table 3 in the main text). Atomic Coordinates and Atomic Displacement Parameters Refined Using the Single-Crystal Neutron-Diffraction Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆, Based on the Si-Vacancy Model with O3a, O3b, O4a and with O4b Split Sites and without Interstitial Oxygens (Final Refinement of Neutron Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆).

Site	Wyckoff position	g	x	у	Z	$U_{ m eq}({ m \AA}^2)$
La1	4 <i>f</i>	0.8912	1/3	2/3	-0.0010(2)	0.0127(4)
La2	6 <i>h</i>	1	0.01213(10)	0.23936(10)	1/4	0.0095(4)
Si	6h	0.971	0.40316(19)	0.37291(19)	1/4	0.0054(7)
01	6 <i>h</i>	1	0.32493(18)	0.48610(18)	1/4	0.0184(6)
O2	6 <i>h</i>	1	0.59574(15)	0.47295(15)	1/4	0.0144(5)
O3a	12 <i>i</i>	0.84(2)	0.3528(7)	0.2581(2)	0.0665(4)	0.0150(11)
O4a = O4	2a	0.68(3)	0	0	1/4	0.032(4)
O3b	12 <i>i</i>	0.16 = (1-g(O3a))	0.298(2)	0.2444(9)	0.0920(15)	U _{iso} 0.008(3)
O4b	4e	0.159 = (1-g(O4a)/2)	0	0	0.144(5)	0.032(4)
					75	7
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	$U_{23}({ m \AA}^2)$
La1	0.0087(4)	$= U_{11}$	0.0206(9)	$= U_{11}/2$	0	0
La2	0.0070(4)	0.0101(5)	0.0104(6)	0.0035(3)	0	0
Si	0.0052(8)	0.0062(7)	0.0061(11)	0.0039(6)	0	0
01	0.0260(8)	0.0228(7)	0.0174(10)	0.0205(6)	0	0
O2	0.0079(6)	0.0105(6)	0.0216(9)	0.0022(5)	0	0
O3a	0.024(2)	0.0139(7)	0.0093(9)	0.0111(8)	-0.0063(10)	-0.0032(5)
O4a, O4b*	0.0116(10)	$= U_{11}$	0.071(12)	$= U_{11}/2$	0	0

* $U_{ij}(O4a) = U_{ij}(O4b)$, $R_1: 0.0611$, $wR_2: 0.0959$, $\Delta \rho_{max} / \Delta \rho_{min}: 0.56 / -0.33$ fm Å⁻³

(B) Crystal structure analysis of single-crystal X-ray diffraction data of La_{9.565}(Si_{5.826} 0.174)O₂₆

The single-crystal X-ray diffraction analysis was also carried out for La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆. The refinement of the occupancy factors gave g(La2) = 0.891(3), g(Si) = 0.981(8), g(O3) = 0.79(8) (g(O3b) = 1 - g(O3) = 0.21) and g(O4) = 0.68(3) (g(O4b) = (1 - g(O4)) / 2 = 0.158) which agree well with the result of the neutron diffraction analysis. The final structure refinements based on the single-crystal X-ray diffraction data were carried out fixing the occupancy factors of cations to theoretical values (i.e. g(La1) = 0.8912, g(La2) = 1 and g(Si) = 0.971). Thus, the X-ray diffraction analysis also supported the Si-vacancy model for this material. The atomic coordinates agree within 3σ between the neutron and X-ray results.

Table S7. Atomic Coordinates and Atomic Displacement Parameters Refined using Single-Crystal X-Ray Diffraction Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆, Based on the Si-Vacancy Model with O3 and O4 Non-Split Sites and without Interstitial Oxygens.

Site	Wyckoff position	g	x	у	z	$U_{ m eq}({ m \AA}^2)$
La1	4f	0.8912	1/3	2/3	-0.00089(8)	0.01465(12)
La2	6 <i>h</i>	1	0.01211(4)	0.23911(4)	1/4	0.01211(9)
Si	6h	0.971	0.40287(18)	0.37267(19)	1/4	0.0084(3)
01	6 <i>h</i>	1	0.3261(6)	0.4864(6)	1/4	0.0189(9)
O2	6 <i>h</i>	1	0.5960(5)	0.4729(5)	1/4	0.0163(9)
O3	12 <i>i</i>	1	0.3476(5)	0.2565(4)	0.0694(5)	0.0270(8)
O4	2a	1	0	0	1/4	0.097(7)
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	U_{12} (Å ²)	U_{13} (Å ²)	U_{23} (Å ²)
La1	0.01132(14)	$= U_{11}$	0.0213(3)	$= U_{11}/2$	0	0
La2	0.00983(15)	0.01317(16)	0.01207(17)	0.00481(13)	0	0
Si	0.0097(7)	0.0086(7)	0.0076(8)	0.0051(6)	0	0
01	0.026(2)	0.026(2)	0.014(2)	0.021(2)	0	0
O2	0.0105(19)	0.015(2)	0.020(2)	0.0042(17)	0	0
03	0.051(2)	0.0188(16)	0.0142(17)	0.0200(16)	-0.0131(16)	-0.0049(14)
O4	0.016(3)	$= U_{11}$	0.26(2)	$= U_{11}/2$	0	0

 $R_1: 0.0207, wR_2: 0.0412, \Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}: 1.56 / -1.26 \ e^{\text{A}^{-3}}$

Table S8. Atomic Coordinates and Atomic Displacement Parameters Refined using Single-Crystal X-Ray Diffraction Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆, Based on the Si-Vacancy Model with O3a and O3b Split Sites, with O4 Non-Split Site and without Interstitial Oxygens.

Site	Wyckoff position	g	x	у	z	$U_{\rm eq}({\rm \AA}^2)$
La1	4f	0.8912	1/3	2/3	-0.00089(8)	0.01462(11)
La2	6h	1	0.01211(4)	0.23910(4)	1/4	0.01210(9)
Si	6h	0.971	0.40285(18)	0.37265(18)	1/4	0.0084(3)
01	6h	1	0.3260(6)	0.4863(6)	1/4	0.0190(9)
O2	6h	1	0.5960(5)	0.4728(5)	1/4	0.0163(9)
O3a	12 <i>i</i>	0.84(2)	0.3543(6)	0.2582(5)	0.0665(6)	0.0180(9)
O4	2a	1	0	0	1/4	0.096(7)
O3b	12 <i>i</i>	0.16 = (1-g(O3a))	0.303(2)	0.246(3)	0.090(3)	Uiso 0.004(5)
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	$U_{23}({ m \AA}^2)$
La1	0.01128(13)	$= U_{11}$	0.0213(3)	$= U_{11}/2$	0	0
La2	0.00982(15)	0.01316(16)	0.01205(16)	0.00480(12)	0	0
Si	0.0097(7)	0.0085(7)	0.0076(7)	0.0051(6)	0	0
01	0.026(2)	0.026(2)	0.014(2)	0.020(2)	0	0
O2	0.0103(19)	0.015(2)	0.020(2)	0.0039(17)	0	0
O3a	0.028(3)	0.019(2)	0.011(2)	0.015(2)	-0.0027(16)	-0.004(2)
O4	0.016(3)	$= U_{11}$	0.26(2)	$= U_{11}/2$	0	0

 $R_1: 0.0201, wR_2: 0.0400, \Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}: 1.55 / -1.26 \ e^{\text{A}^{-3}}$

Table S9. Atomic Coordinates and Atomic Displacement Parameters Refined using Single-Crystal X-Ray Diffraction Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆, Based on the Si-Vacancy Model with O3 Non-Split Site, with O4a and O4b Split Sites and without Interstitial Oxygens.

Site	Wyckoff position	g	x	у	Z	$U_{ m eq}({ m \AA}^2)$
La1	4f	0.8912	1/3	2/3	-0.00089(8)	0.01463(11)
La2	6 <i>h</i>	1	0.01211(4)	0.23911(4)	1/4	0.01211(9)
Si	6 <i>h</i>	0.971	0.40287(19)	0.37267(18)	1/4	0.0084(3)
01	6 <i>h</i>	1	0.3261(6)	0.4863(6)	1/4	0.0190(9)
O2	6 <i>h</i>	1	0.5960(5)	0.4729(5)	1/4	0.0164(9)
O3	12 <i>i</i>	1	0.3476(5)	0.2565(4)	0.0694(5)	0.0270(8)
O4a = O4	2a	0.68	0	0	1/4	0.038(5)
O4b	12 <i>i</i>	0.16 = (1-g(O4a))/2	0	0	0.138(9)	= O4
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	U_{33} (Å ²)	$U_{12}({ m \AA}^2)$	U_{13} (Å ²)	$U_{23}({ m \AA}^2)$
La1	0.01132(14)	$= U_{11}$	0.0212(3)	$= U_{11}/2$	0	0
La2	0.00983(15)	0.01317(16)	0.01209(17)	0.00481(13)	0	0
Si	0.0097(7)	0.0086(7)	0.0076(8)	0.0051(6)	0	0
01	0.026(2)	0.026(2)	0.015(2)	0.021(2)	0	0
O2	0.0105(19)	0.015(2)	0.020(2)	0.0042(17)	0	0
03	0.051(2)	0.0187(16)	0.0142(17)	0.0200(16)	-0.0130(16)	-0.0048(14)
O4a, O4b*	0.015(3)	$= U_{11}$	0.084(17)	$= U_{11}/2$	0	0

* $U_{ij}(\text{O4a}) = U_{ij}(\text{O4b}), \quad R_1 : 0.0205, \ wR_2 : 0.0406, \ \Delta \rho_{\text{max}} / \Delta \rho_{\text{min}} : 1.56 / -1.26 \ e^{\text{A}^{-3}}$

Table S10. Atomic Coordinates and Atomic Displacement Parameters Refined using Single-Crystal X-Ray Diffraction Data of La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆, Based on the Si-Vacancy Model with O3a, O3b, O4a and O4b Split Sites and without Interstitial Oxygens (**Final Refinement of X-Ray Data of La_{9.565}**(Si_{5.826} $\square_{0.174}$)O₂₆).

Site	Wyckoff position	g	x	у	Z	$U_{\rm eq}$ (Å ²)
La1	4f	0.8912	1/3	2/3	-0.00089(8)	0.01460(11)
La2	6h	1	0.01211(4)	0.23910(4)	1/4	0.01210(9)
Si	6h	0.971	0.40286(18)	0.37264(18)	1/4	0.0084(3)
01	6h	1	0.3260(6)	0.4863(6)	1/4	0.0190(9)
O2	6h	1	0.5960(5)	0.4728(5)	1/4	0.0164(9)
O3a	12 <i>i</i>	1	0.3543(6)	0.2582(5)	0.0665(6)	0.0181(9)
O4a = O4	2a	0.68	0	0	1/4	0.038(5)
O3b	12 <i>i</i>	0.16	0.303(2)	0.246(3)	0.090(3)	$U_{\rm iso} 0.004(5)$
O4b	4e	0.159	0	0	0.138(8)	0.038(5)
Site	$U_{11}({ m \AA}^2)$	$U_{22}({ m \AA}^2)$	$U_{33}({ m \AA}^2)$	$U_{12}({ m \AA}^2)$	$U_{13}({ m \AA}^2)$	$U_{23}({ m \AA}^2)$
La1	0.01129(13)	$= U_{11}$	0.0212(3)	$= U_{11}/2$	0	0
La2	0.00981(15)	0.01315(16)	0.01207(16)	0.00480(12)	0	0
Si	0.0097(7)	0.0085(7)	0.0075(7)	0.0051(6)	0	0
01	0.026(2)	0.026(2)	0.015(2)	0.020(2)	0	0
O2	0.0103(19)	0.015(2)	0.020(2)	0.0040(16)	0	0
O3a	0.028(3)	0.019(2)	0.011(2)	0.015(2)	-0.003(2)	-0.0026(15)
04a 04b*	0.015(3)	$= U_{11}$	0.084(16)	$-U_{11}/2$	0	0

* $\overline{U_{ij}(\text{O4a})} = U_{ij}(\text{O4b}), R_1: 0.0199, wR_2: 0.0391, \Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}: 1.55 / -1.27 \ e \ \text{\AA}^{-3}$

(C) Density functional theory (DFT) based calculations

Density functional theory (DFT)-based structural optimization of La₇₆(Si₄₇ \Box)O₂₀₈ with an Si vacancy \Box and without interstitial oxygens was successfully performed (Fig. 3). Table S11 shows that the averaged atomic coordinates of optimized La₇₆(Si₄₇ \Box)O₂₀₈ agree well with those refined with single-crystal neutron data of La_{9.565}(Si_{5.826} \Box _{0.174})O₂₆. DFT-based structural optimization was also applied to La₅₈Si₃₆O₁₅₉ with three interstitial oxygen atoms (2 × 1 × 3 supercell, the interstitial model with the corresponding chemical formula of La_{9.667}Si₆O_{26.5}). The calculation condition of this La₅₈Si₃₆O₁₅₉ was the same as that of La₇₆(Si₄₇ \Box)O₂₀₈ (Si-vacancy model) except the *k*-point mesh of 3×3×1. This interstitial model is the same as that reported by Jones et al.¹⁷ and the initial atomic coordinates of the interstitial oxygen atoms were imported from this literature. The formation energies (heats of formation, formation enthalpies) of La₅₈Si₃₆O₁₅₉ and La₇₆(Si₄₇ \Box)O₂₀₈ were evaluated using the following equations.

$$29 \text{ La}_2\text{O}_3 + 36 \text{ SiO}_2 \rightarrow \text{ La}_{58}\text{Si}_{36}\text{O}_{159} \quad \text{(interstitial model)} \quad (S1)$$

38 $La_2O_3 + 47 SiO_2 \rightarrow La_{76}(Si_{47}\square)O_{208}$ (Si-vacancy model without interstitial oxygens) (S2)

The formation energy of La₅₈Si₃₆O₁₅₉ with three interstitial oxygens in equation (S1) was calculated to be -32.046 eV. The calculated formation energy of La₇₆(Si₄₇ \Box)O₂₀₈ with an Si vacancy in equation (S2) was -48.122 eV. Therefore, it is suggested that both reactions (S1) and (S2) are energetically favorable.

La₅₈Si₃₆O₁₅₉ (interstitial model) + 5.125 La₂SiO₅

 $\rightarrow 0.875 \text{ La}_{76}(\text{Si}_{47}\square)\text{O}_{208}(\text{Si-vacancy model without interstitial oxygens})$ (S3)

The formation energy of 0.875 La₇₆(Si₄₇ \Box)O₂₀₈ in equation (S3) was estimated to be + 11.115 eV, which is equaled to +43.9 meV per atom, which is too small to determine the energetically favorable model. Therefore, the present DFT calculations show that the Si-deficient is possible to form.

Table S11. Comparison of the Fractional Coordinates (x_{DFT} , y_{DFT} , z_{DFT}) Obtained by the DFT-Based Structural Optimization of La₇₆(Si₄₇)O₂₀₈ (Si-vacancy model), with Those (x_{ND} , y_{ND} , z_{ND}) Refined Using the Single-Crystal Neutron-Diffraction (ND) Data of La_{9.565}(Si_{5.826}]_{0.174})O₂₆.

		DFT		Single-cry	stal neutron o		Difference			
Site	XDFT	ydft	ZDFT	x _{ND}	УND	ZND	$x_{\rm DFT} - x_{\rm ND}$	ydft – ynd	ZDFT – ZND	
Lal	0.334(7)	0.668(8)	-0.010(12)	1/3	2/3	-0.0010(2)	0.00035	0.00124	-0.00931	
La2	0.010(8)	0.243(5)	0.251(5)	0.01213(10)	0.23936(10)	1/4	-0.00219	0.00352	0.00121	
Si	0.401(4)	0.370(5)	0.249(4)	0.40316(19)	0.37291(19)	1/4	-0.00258	-0.00274	-0.00058	
01	0.322(14)	0.484(14)	0.247(11)	0.32493(18)	0.48610(18)	1/4	-0.00323	-0.00177	-0.00254	
O2	0.595(6)	0.471(6)	0.248(10)	0.59574(15)	0.47295(15)	1/4	-0.00076	-0.00180	-0.00190	
03	0.342(16)	0.252(7)	0.068(9)	0.3528(7)	0.2581(2)	0.0665(4)	-0.01100	-0.00610	0.00184	
O4	0.001(3)	-0.001(3)	0.249(6)	0	0	1/4	0.00109	-0.00078	-0.00093	

The fractional coordinates (x_{DFT} , y_{DFT} , z_{DFT}) were calculated by converting the fractional coordinates of the 2 × 2 × 2 supercell La₇₆(Si₄₇□)O₂₀₈) into the corresponding ones in the 1 × 1× 1 unit cell of La_{9.5}(Si_{5.875}□_{0.125})O₂₆. The fractional coordinates (x_{DFT} , y_{DFT} , z_{DFT}) were averaged and the standard deviations were also calculated as shown in parentheses.

(D) Treatment of O3 and O4 in the structure analysis of the time-of-flight neutron data of La_{9.565}(Si_{5.826} 0.174)O₂₆

Difference Fourier maps clearly show the residual density around O3 and O4 sites (Figs. 4a and 4c). The highest residual density (1.13 fm Å⁻³) appeared at (0, 0, 0.144) (observed in Fig. 2c, z = 0.15) which is quite near from the O4 position of (0, 0, 1/4) and the distance between these two positions is 0.76 Å which is too close to be considered as an interstitial site. Also, the negative density was observed at O4 site (clearly observed in Fig. 2c, z = 1/4). Therefore we concluded that O4 is highly disordered along the *c* axis and we O4 into O4a and O4b as a split site model. The total occupancy factors of O4a and O4b was constrained to be unity and common anisotropic displacement parameters were used for O4a and O4b because it gave better result than using independent isotropic or anisotropic displacement parameter. The second highest residual density (0.78 fm Å⁻³) appeared at (0.284, 0.241, 0.099) (clearly observed in Fig. 2c, z = 0.10) which was 0.61 Å from O3 site (0.3489(2), 0.2565(2), 0.0680(3)). This site is also too close to be considered as an interstitial site. Therefore, O3 was also split into O3a and O3b as a split site model. The total occupancy factor of O3a and O3b was fixed to unity and an anisotropic and isotropic displacement parameters were used for O3a and O3b was fixed to unity and an anisotropic and isotropic displacement parameters were used for O3a and O3b was fixed to be considered as an interstitial site. Therefore, O3 was also split into O3a and O3b as a split site model. The total occupancy factor of O3a and O3b was fixed to unity and an anisotropic and isotropic displacement parameters were used for O3a and O3b, respectively.

(E) Results of the single-crystal neutron diffraction analyses of $La_{9.565}(Si_{5.826}\square_{0.174})O_{26}$ by various interstitial models.

Refere	nce No.	(J.	15 Tolchard et al. 20	003)	17 (L. León-Reina et al. 2004)	19 (L. León-Reina et al. 2005)	20 (A. Jones et al. 2008)	27 (R. Ali et al. 2008)	24 (K. Matsunaga et al. 2012)	23 : (K. Fukuda et al. 2012)	(T.	43 An et al. 2014)
Formu liter	la in the ature		La9.33Si6O26		La _{9.55} Si ₆ O _{26.32}	La9.33Si0.5Ge0.5O26	La _{9.67} Si ₆ O _{26.5}	$La_{9.69}Si_{5.70}Mg_{0.30}O_{26.24}$	La9.33Si6O26	La9.50Si6O26.25		$Nd_8Sr_2Si_6O_{26}$	
Methods litera	used in the ture*		DFT		Joint PXRD PND	Joint PXRD PND	DFT	PND	DFT	SXRD		SND	
Label us liter	ed in the ature	O6	07	07'	O5	05	O5	05	05	O5	O _{int} 1	O _{int} 2	O _{int} 3
Wyckof	f position	2b	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	6h	6h	6h	12 <i>i</i>
	x	0	0.0135	0.013	-0.001	0.005	0.0045	-0.004	0	0.27	0.7375	0.3684	0.1533
	у	0	0.2333	0.2326	0.224	0.242	0.2223	0.24	0.09	0.08	0.2011	0.101	0.4994
	z	1/2	0.8763	0.6246	0.58	0.61	0.6309	0.6	0.35	1/4	1/4	1/4	0.1574
	R_1	0.1004	0.0708	0.0708	0.0703	0.0707	0.0707	0.0706	0.0704	0.0778	0.0770	0.0790	0.0699
Analysis- 1	wR_2	0.1230	0.1013	0.1013	0.1012	0.1016	0.1016	0.1016	0.1013	0.1060	0.1057	0.1063	0.1012
1	$g(O_{int})$	0.387500	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583	0.129167	0.129167	0.129167	0.064583
	R_1	0.0621	0.0622	0.0622	0.0622	0.0622	0.0622	0.0622	0.0622	0.0622	0.0622	0.0622	0.0622
Analysis- 2	wR_2	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965
2	$g(O_{int})$	-0.015(9)	0.002(3)	0.002(3)	0.002(3)	0.000(3)	0.000(3)	-0.001(3)	0.000(3)	0.000(5)	0.001(5)	-0.003(5)	0.002(3)
	R_1		0.0697	0.0697	0.0696	0.0697	0.0697	0.0696	0.0694	0.0772	0.0780	0.0778	0.0700
	wR_2		0.1005	0.1005	0.1005	0.1005	0.1005	0.1005	0.1004	0.1053	0.1051	0.1052	0.1007
Analysis-	x	-	0.033(2)	0.033(2)	0.0262(19)	0.033(2)	0.033(2)	0.0262(19)	0.0305(19)	0.2364(14)	0.7073(14)	0.3445(14)	0.1475(18)
3	у		0.2139(19)	0.2139(19)	0.2112(19)	0.2139(19)	0.2139(19)	0.2112(19)	0.1121(18)	0.0611(14)	0.2100(14)	0.0675(14)	0.4790(19)
	z		0.914(3)	0.586(3)	0.576(3)	0.586(3)	0.586(3)	0.576(3)	0.321(3)	1/4	1/4	1/4	0.185(2)
	$g(O_{int})$	0.387500	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583	0.129167	0.129167	0.129167	0.064583

Table S12. Results of the Single-Crystal Neutron Diffraction Analyses of $La_{9.565}(Si_{5.826}\square_{0.174})O_{26}$ by Various Interstitial Models.

The position of the interstitial sites were imported from the previously reported literature. In the *Analysis*-1, the atomic coordinates were fixed to reported values and occupancy factor was fixed to the ideal value. In the *Analysis*-2, the atomic coordinates were fixed to reported values and occupancy factor was refined. In the *Analysis*-3, the atomic coordinates were refined and occupancy factor was fixed to the ideal value. In all refinements, g(La1) was fixed to 0.9625 and the other occupancy factors were fixed to unity. * DFT: Density Functional Theory. PND: Powder Neutron Diffraction. PXRD: Powder X-Ray Diffraction. SXRD: Synchrotron X-Ray Diffraction. SND: Single-crystal Neutron Diffraction.

Reference No.		45 (E. Béchade et al. 2009)	22 (T. Liao et al. 2011)		44 (T. An et al. 2016)													
Formula in the literature		La _{9.33} Si ₆ O ₂₆	La _{9.33} Si ₆ O ₂₆		Nd _{9.33} Si ₆ O ₂₆ (4 K) Nd _{9.33} Si ₆ O ₂₆ (100 K)										Nd _{9.33} Si ₆ O ₂₆ (300 K)			
Methods used in the literature		e DFT	DF	Г						SI	ND							
Label used in the literature		05	O_i	O_i	O _{Int} 1	OInt2	O _{Int} 3	O _{Int} 4	O _{Int} 1	O _{Int} 2	O _{Int} 3	O _{Int} 4	O _{Int} 5	O _{Int} 1	O _{Int} 2	O _{Int} 3		
Wycko	off position	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	6 <i>h</i>	12 <i>i</i>	12 <i>i</i>							
	x	0.106	-0.0820	0.0117	0.1429	0.0832	0.0003	0.7622	0.7302	0.1431	0.0002	0.0686	0.3865	0.1300	0.0001	0.5079		
	у	0.0177	-0.0964	0.1051	0.3981	0.3085	0.0003	0.0851	0.1313	0.4042	0.0002	0.4393	0.1276	0.4034	0.0001	0.1627		
Z		0.588	0.6093	0.9144	0.0361	0.0554	0.1539	0.2163	1/4	0.0382	0.1434	0.0279	0.024	0.037	0.1304	0.0358		
	R_1	0.691	0.678	0.678	0.0709	0.0696	0.0824	0.0725	0.0778	0.0707	0.0824	0.0699	0.0704	0.070	0.071	0.0712		
Analysis-1	wR_2	0.1009	0.1002	0.1002	0.1015	0.1005	0.1099	0.102	0.1051	0.1014	0.11	0.1012	0.1015	0.1016	0.1023	0.1029		
	$g(O_{int})$	0.064583	0.032292	0.032292	0.064583	0.064583	0.064583	0.064583	0.129167	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583		
	R_1	0.622	0.622	0.622	0.0622	0.0622	0.0621	0.0622	0.0622	0.0622	0.0621	0.0622	0.0622	0.0622	0.0623	0.0622		
Analysis-2	wR_2	0.965	0.965	0.965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0963		
	$g(O_{int})$	0.001(3)	-0.002(4)	0.003(4)	0.000(3)	0.004(3)	-0.001(2)	0.002(3)	0.007(5)	0.000(3)	-0.001(2)	-0.002(3)	0.000(3)	0.000(3)	-0.005(3)	-0.014(3)		
	R_1	0.0627	0.0622	0.0622	0.0679	0.0681		0.0687	0.0767	0.0679		0.0679	0.069	0.0687	0.0693	0.0695		
	wR_2	0.0966	0.0961	0.0961	0.0999	0.0999		0.0999	0.1048	0.0999		0.0999	0.0999	0.1004	0.1002	0.1011		
Anglusia 2	x	0.0485(19)	-0.067(3)	0.002(5)	0.0948(19)	0.0851(18)	diversed	0.7595(19)	0.7340(13)	0.0948(19)	divanced	0.0948(19)	0.3852(18)	0.1706(18)	0.024(2)	0.489(3)		
Anatysis-3	у	-0.007(2)	-0.097(3)	0.057(4)	0.4193(18)	0.3263(19)	diverged	0.1124(19)	0.1113(14)	0.4193(18)	diverged	0.4193(18)	0.1756(19)	0.3634(19)	0.0152(19)	0.188(2)		
	z	0.535(2)	0.696(4)	0.968(5)	0.000(3)	0.009(3)		0.187(2)	1/4	0.000(3)		0.000(3)	-0.007(3)	0.0515(19)	0.1726(18)	0.052(3)		
	$g(O_{int})$	0.064583	0.032292	0.032292	0.064583	0.064583		0.064583	0.129167	0.064583		0.064583	0.064583	0.064583	0.064583	0.064583		

Table S12(continued). Results of the Single-Crystal Neutron Diffraction Analyses of $La_{9.565}(Si_{5.826}\square_{0.174})O_{26}$ by Various Interstitial Models.

Reference	ce No.							(ТА	44 n et al. 2016)							
Formula in the literature Methods used in the literature Label used in the literature			N	d _{9.33} Si ₆ O ₂₆ (573	3 K)		Nd _{9.33} Si ₆ O ₂₆ (773 K)									
		O _{Int} 1	$O_{Int}2$	O _{Int} 3	O _{Int} 4	O _{Int} 5	O _{Int} 1	$O_{Int}2$	O _{Int} 3	$O_{Int}4$	O _{Int} 5	O _{Int} 6	$O_{Int}7$	O _{Int} 8	O _{Int} 9	
Wyckoff position		12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	6h	6h	6h	12 <i>i</i>	6 <i>h</i>	6h	12 <i>i</i>	6 <i>h</i>	12 <i>i</i>	
x		0.1507	0.6248	0.9891	0.0643	0.5911	0.5056	0.2381	0.3575	0.8912	0.4492	0.0513	0.1348	0.1388	0.9406	
У		0.3933	0.0643	0.895	0.9214	0.8222	0.0271	0.406	0.4281	0.0109	0.0246	0.4567	0.4017	0.3053	0.0052	
z		0.0354	0.0557	0.0596	0.0932	0.0674	1/4	1/4	1/4	0.036	1/4	1/4	0.0454	1/4	0.0875	
Analysis- 1	R_1	0.0711	0.0699	0.0686	0.0706	0.0706	0.0774	0.0781	0.0708	0.0702	0.079	0.0795	0.0703	0.0795	0.0665	
	wR_2	0.1016	0.1008	0.1004	0.1018	0.1013	0.1056	0.1064	0.1013	0.1014	0.1053	0.1072	0.1013	0.1067	0.0992	
	$g(O_{int})$	0.0645833	0.0645833	0.0645833	0.0645833	0.0645833	0.129167	0.129167	0.129167	0.0645833	0.129167	0.129167	0.0645833	0.129167	0.0645833	
	R_1	0.0622	0.0622	0.062	0.0622	0.0622	0.0621	0.0622	0.0622	0.0622	0.0622	0.0621	0.0622	0.0622	0.0614	
Analysis- 2	wR_2	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0964	0.0965	0.0965	0.0962	
	$g(O_{int})$	0.000(3)	0.005(3)	0.006(4)	-0.004(3)	0.000(3)	0.004(5)	0.000(5)	0.001(5)	-0.001(3)	0.002(5)	-0.010(4)	0.002(3)	-0.004(4)	0.015(3)	
	R_1	0.0684	0.0695	0.0627	0.0701	0.0689	0.0764	0.0768	0.0777	0.0627	0.0764	0.078	0.0679	0.0753	0.0627	
	wR_2	0.0999	0.0997	0.0966	0.1005	0.0999	0.1037	0.1045	0.1057	0.0966	0.1037	0.105	0.0999	0.1035	0.0966	
Analysis-	x	0.1574(19)	0.5906(19)	0.993(2)	0.0900(19)	0.6202(19)	0.4771(13)	0.2753(13)	0.3338(13)	0.9515(19)	0.4771(13)	0.1327(14)	0.0948(19)	0.1610(14)	0.9515(19)	
3	у	0.3517(19)	0.0390(18)	0.9442(17)	0.9346(19)	0.8287(19)	0.0434(13)	0.3951(14)	0.4154(14)	0.007(2)	0.0434(13)	0.4730(14)	0.4193(18)	0.2478(13)	0.007(2)	
	z	0.001(3)	0.099(3)	0.035(2)	0.181(3)	0.008(3)	1/4	1/4	1/4	0.035(2)	1/4	1/4	0.000(3)	1/4	0.035(2)	
	$g(O_{int})$	0.0645833	0.0645833	0.0645833	0.0645833	0.0645833	0.129167	0.129167	0.129167	0.0645833	0.129167	0.129167	0.0645833	0.129167	0.0645833	

Table S12(continued). Results of the Single-Crystal Neutron Diffraction Analyses of $La_{9.565}(Si_{5.826}\square_{0.174})O_{26}$ by Various Interstitial Models.

Referen	ce No.								4 (T. An et	4 al. 2016)							
Formula in the literature Methods used in the literature Label used in the literature				Nd _{28.5}	5/3Al _{0.5} Si _{5.5} O ₂₆	100K			(1.711101	Nd	_{29/3} AlSi ₅ O ₂₆ 10	Nd _{29.5/3} Al _{1.5} Si _{4.5} O ₂₆ 100K					
		^{1e} $O_{Int}1$ $O_{Int}2$ $O_{Int}3$ $O_{Int}4$ $O_{Int}5$ $O_{Int}6$ $O_{Int}7$								ID O _{Int} 2	O _{Int} 3	O _{Int} 4	O _{Int} 5	D _{Int} 5 O _{Int} 1 O _{Int} 2 O _{Int} 3 O _{Int} 4			
Wyckoff	position	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	6h	6 <i>h</i>	6h	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	6h	6h	6h	6 <i>h</i>
x		0.6888	0.8069	0.9272	0.7760	0.8026	0.4142	0.7600	0.0700	0.3816	0.8045	0.5319	0.5545	0.4882	0.6129	0.4471	0.5866
у	у		0.035	-0.0014	0.1509	0.1129	0.5105	0.1197	0.2853	0.5552	0.0307	0.1348	0.1557	0.0371	0.1592	0.4636	0.2295
z		0.1431	0.1261	0.1058	1/4	1/4	1/4	0.1625	0.1405	0.1616	0.1096	0.0377	0.1357	1/4	1/4	1/4	1/4
Analysis- 1	R_1	0.071	0.0706	0.069	0.0709	0.0793	0.0762	0.0689	0.0716	0.0706	0.0705	0.0703	0.0698	0.0765	0.0792	0.079	0.0785
	wR_2	0.1013	0.1009	0.1007	0.1015	0.1059	0.1046	0.1005	0.1019	0.1014	0.1008	0.102	0.1008	0.1043	0.1067	0.1065	0.106
	$g(O_{int})$	0.064583	0.064583	0.064583	0.129167	0.129167	0.129167	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583	0.129167	0.129167	0.129167	0.129167
	R_1	0.0622	0.0622	0.0618	0.0622	0.0622	0.0622	0.0622	0.0621	0.0622	0.0622	0.0622	0.0621	0.0621	0.0621	0.0621	0.0622
Analysis- 2	wR_2	0.0965	0.0965	0.0964	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0964	0.0965	0.0964	0.0965	0.0965	0.0965
	$g(O_{int})$	0.001(3)	0.004(3)	0.007(3)	0.003(5)	-0.001(2)	0.007(5)	0.002(3)	-0.005(4)	-0.003(3)	0.004(3)	-0.007(3)	0.004(3)	0.012(5)	-0.004(2)	-0.003(3)	-0.001(2)
	R_1	0.0695	0.0697	0.0627	0.0762	0.0763	0.076	0.0687	0.0697	0.0686	0.0697	0.0682	0.0688	0.0764	0.0745	0.0764	0.0786
	wR_2	0.1004	0.1005	0.0966	0.1044	0.1044	0.1045	0.0999	0.1007	0.1008	0.1005	0.0996	0.0999	0.1037	0.1032	0.1046	0.1058
Analysis-	x	0.6351(19)	0.8193(19)	0.9515(19)	0.7711(13)	0.7709(13)	0.4134(13)	0.7595(19)	0.0661(19)	0.4108(19)	0.8193(19)	0.5415(19)	0.5273(18)	0.4771(13)	0.5181(13)	0.4187(13)	0.5733(13)
ŝ	у	-0.0304(19)	0.033(2)	0.007(2)	0.1257(13)	0.1231(13)	0.5170(13)	0.1124(19)	0.3087(19)	0.5865(18)	0.033(2)	0.1832(18)	0.1214(19)	0.0434(13)	0.1086(14)	0.5121(13)	0.2322(13)
	z	0.124(3)	0.086(3)	0.035(2)	0.25	0.25	0.25	0.187(2)	0.188(2)	0.186(2)	0.086(3)	0.003(3)	0.139(3)	0.25	0.25	0.25	0.25
	$g(O_{int})$	0.064583	0.064583	0.064583	0.129167	0.129167	0.129167	0.064583	0.064583	0.064583	0.064583	0.064583	0.064583	0.129167	0.129167	0.129167	0.129167

Table S12(continued). Results of the Single-Crystal Neutron Diffraction Analyses of $La_{9.565}(Si_{5.826}\square_{0.174})O_{26}$ by Various Interstitial Models.

Referen	ce No.		44 (T An et al. 2016)													
Formula in the literature				Nd9.33Si6O20	5 As Grown		Nd _{9.33} Si ₆ O ₂₆ Annealed									
Methods us literat	sed in the ture															
Label used in the literature		O _{Int} 1	O _{Int} 2	O _{Int} 3	O _{Int} 4	O _{Int} 5	O _{Int} 6	O _{Int} 1	O _{Int} 2	O _{Int} 3	O _{Int} 4	O _{Int} 5	O _{Int} 6	O _{Int} 7		
Wyckoff	position	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	6h	12 <i>i</i>	12 <i>i</i>	6 <i>h</i>	6 <i>h</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	12 <i>i</i>	6 <i>h</i>		
x		0.9844	0.1003	0.7409	0.6952	0.5358	0.3958	0.7527	0.8184	0.0819	0.3858	0.5423	0.4169	0.1688		
у		0.0042	0.3392	0.0887	0.8210	0.1373	0.5243	0.0505	0.1413	0.3374	0.5979	0.1386	0.5739	0.1724		
Z		0.0618	0.0574	0.1930	1/4	0.1276	0.1206	1/4	1/4	0.0478	0.1666	0.0868	0.0634	1/4		
Analysis- 1	R_1	0.0764	0.0698	0.0697	0.0787	0.0694	0.0702	0.0768	0.0784	0.0696	0.0698	0.0697	0.0714	0.0797		
	wR_2	0.1052	0.1003	0.1003	0.1066	0.1001	0.1005	0.1051	0.1057	0.1002	0.1015	0.1009	0.1017	0.1071		
	$g(O_{int})$	0.0645833	0.0645833	0.0645833	0.129167	0.0645833	0.0645833	0.129167	0.129167	0.0645833	0.0645833	0.0645833	0.0645833	0.129167		
	R_1	0.0622	0.0623	0.0621	0.0622	0.0621	0.0623	0.0622	0.0622	0.0623	0.0623	0.0622	0.0621	0.0622		
Analysis- 2	wR_2	0.0965	0.0965	0.0965	0.0965	0.0964	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965	0.0965		
	$g(O_{int})$	0.000(3)	0.005(3)	0.006(3)	-0.001(2)	0.008(3)	0.006(3)	0.004(5)	-0.001(2)	0.007(3)	-0.004(3)	0.001(3)	-0.003(4)	-0.003(2)		
	R_1	0.0627	0.0681	0.0687	0.0753	0.0689	0.0689	0.0766	0.0762	0.0681	0.0689	0.0689	0.0689	0.0755		
	wR_2	0.0966	0.0999	0.0999	0.1035	0.0999	0.0999	0.1047	0.1044	0.0999	0.1003	0.0999	0.0999	0.1035		
Analysis-	x	0.9515(19)	0.0851(18)	0.7595(19)	0.7522(13)	0.5276(18)	0.4138(18)	0.7367(14)	0.7711(13)	0.0851(18)	0.3741(18)	0.5276(18)	0.4138(18)	0.1657(14)		
3	у	0.007(2)	0.3263(19)	0.1124(19)	0.9132(14)	0.1229(19)	0.5229(18)	0.0410(13)	0.1257(13)	0.3263(19)	0.6124(18)	0.1229(19)	0.5229(18)	0.2497(13)		
	z	0.035(2)	0.009(3)	0.187(2)	1/4	0.137(3)	0.105(3)	1/4	1/4	0.009(3)	0.197(2)	0.137(3)	0.105(3)	1/4		
	$g(O_{int})$	0.0645833	0.0645833	0.0645833	0.129167	0.0645833	0.0645833	0.129167	0.129167	0.0645833	0.0645833	0.0645833	0.0645833	0.129167		

Table S12(continued). Results of the Single-Crystal Neutron Diffraction Analyses of $La_{9.565}(Si_{5.826}\square_{0.174})O_{26}$ by Various Interstitial Models.

(F) Difference Fourier maps of the Single-Crystal X-Ray Diffraction Data of La_{9.565}(Si_{5.826} 0.174)O₂₆

Figure S1. Difference Fourier maps on the *ab* planes at six different *z* values obtained by the single-crystal X-ray diffraction analysis of the basic material La_{9.565}(Si_{5.826} $\square_{0.174}$)O₂₆. $\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}} = 1.55 / -1.27 \ e^{-3}$. No significant peaks indicating no interstitial oxygens. Contours from -1.0 to 1.0 e^{-3} by 0.2 e^{-3} step.

End of the Supplementary Information.