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Experimental Section 

Materials: Dopamine hydrochloride was purchased from Sigma-Aldrich (China). 

Tetraethyl orthosilicate (TEOS), hexane, ditin butyl dilaurate, CuSO4, H2O2 and 

tris(hydroxymethyl) aminomethane were obtained from Sinopharm Chemical Reagent Co. 

Ltd (China). Dihydroxyl-terminated polydimethylsiloxane (PDMS(OH), average 

molecular weight: 400 g/mol) was purchased from Wuxi Quanli Chemical Co., Ltd. 

(China). The melamine sponges were bought from Clean Wrap Company (China) 

(average pore size: 120 µm). The crude oil was kindly provided by PetroChina Co. Ltd 

(China). All the reagents were used as received without further purification. The water 

used in all experiments was deionized and ultrafiltered to 18.2 MΩ·cm with an ELGA 136 

LabWater system (France).

Preparation of the self-heating hydrophobic/oleophilic sponges: The melamine sponges 

were firstly washed by ethanol to remove adsorbed impurities and then dried in a vacuum 
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oven at 60 oC. PDA deposition was conducted according to our previous method.[13a] 

Briefly, dopamine hydrochloride (2 mg/mL), CuSO4 (5 × 10-3 M) and H2O2 (19.6 × 10-3 

M) were dissolved in Tris-buffer solution (200 mM, pH 8.5), and then the sponges were 

immersed into the aqueous solution for 40 min, followed by water rinsing and dried in 

vacuum oven at 60 oC. Multi-deposition of PDA was operated by repeating the above-

described process to enhance the photothermal conversion effect. Finally, the as-prepared 

PDA-coated sponges were put into hexane solution with PDMS (OH) (10 g/L)/TEOS (0.5 

g/L)/ditin butyl dilaurate (0.05 g/L) for 30 min and then moved into an oven at 60 °C for 2 

h. As a control, blank sponges were modified to hydrophobic only with PDMS 

(OH)/TEOS/ditin butyl dilaurate mixture.

Characterization: The porous morphologies were observed by the field emission scanning 

electron microscopy (FESEM, Hitachi, S4800, Japan). The chemical compositions of the 

sponge surfaces were characterized by an X-ray photoelectron spectrometer (XPS, 

PerkinElmer, USA) with Al Kα excitation radiation (1486.6 eV). The surface wettability 

was analyzed on the basis of water contact angle measurement using the drop Meter A-

200 contact angle system (MAIST Vision Inspection & Measurement Co. Ltd, China). 

The absorption and reflectance spectra were measured using a ultraviolet 

spectrophotometer (UV 2450, Shimadzu, Japan). The viscosity of the crude oil was 

determined by a rotational rheometer (MCR302, Antonpaar, Austria). The surface 

temperatures of the samples were analyzed by a thermal infrared camera (FLIR E60, Flir 

System. Inc., USA). The structural stability of the sponges was studied by Instron 
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3343B11658 system (Instron, USA) and the stress-strain curves were obtained with a 

strain rate of 50 mm/min.

Static crude oil adsorption measurement: During the static adsorption process, abundant 

crude oil was contained in a beaker, and then a sponge sample with 2 × 2 × 1 cm shape 

was placed on the oil surface. The sunlight was provided by a solar simulator (PL-

XQ500W, Changzhou Hongming Instument Technology Co,. Ltd, China) and the power 

density was about 1.5 kW/m2. We recorded the mass changes of the different sponges 

every 1 min under simulated sunlight irradiation. The oil adsorption capacity (A, g/m3) 

was calculated according to the following equation:

𝐴 =  
𝑚1 ‒ 𝑚0

𝑉
where m0 and m1 represent the weight (g) of sponges before and after oil adsorption, 

respectively. V is the volume (m3) of sponges. 

Continuous crude oil recovery method: Water (100 mL) and crude oil (50 mL) were added 

into a beaker to simulate real oil spill pollution. A hydrophobic/oleophilic PDMS/PDA-

coated sponge (2 × 2 × 1 cm) was equipped with a homemade device and then placed into 

the pollutant surface, where the sponges were floated on the crude oil surface. One end of 

a pipe was connected with the sponge while the other end was linked with a peristaltic 

pump (300 RPM). The pump’s outlet was connected to a collecting beaker. In this process, 

the sunlight power density was about 1.5 kW/m2, and the PDMS-coated sponges were 

used as the reference to carry out the similar experiments.
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Figure S1. Schematic illustration of the reaction mechanism for fabricating self-heating 
hydrophobic/oleophilic sponges: (a) Mechanism of photothermal conversion layer 
formation via a typical mussel-inspired PDA deposition, (b) Mechanism of 
hydrophobic/olephilic layer construction. The hydrophobic/olephilic layer mainly 
comprises of PDMS, which was fabricated via a condensation reaction between 
dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)) and tetraethyl orthosilicate 
(TEOS) using dibutyltin dilaurate as a catalyst.

Figure S2. Digital images of a water drop on the surface of nascent, PDA-coated and 
PDMS/PDA-coated sponges. The water drop was dyed by methyl blue. As we can see, the 
nascent and PDA-coated sponges are very hydrophilic. However, the surface wettability is 
instantly transformed from hydrophilicity to hydrophobicity after the participation of 
PDMS layer. In addition, the color of the PDMS/PDA-coated sponges still remains black. 
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Figure S3. Images of oil contact angle measurement for PDMS/PDA-coated sponges. 1, 
2-dichloroethane was selected as the model oil in this experiment.

Figure S4. UV-vis absorption spectra and diffusive reflectance spectra of different 
sponges. PDMS/PDA1, PDMS/PDA3 and PDMS/PDA5 represent the deposition cycles of 
PDA are 1, 3 and 5, respectively. The deposition time of every cycle is 40 min. The 
environment humidity is 60%. All the experiments were executed at room temperature. It 
is obvious that along with the increase of PDA deposition cycle, the light absorbability 
constantly increases, and PDMS/PDA3-coated and PDMS/PDA5-coated sponges hold a 
similar light absorption, indicating an equal photothermal conversion efficiency.
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Figure S5. Reusability of the photothermal conversion effect of self-heating sponge under 
the simulated sunlight irradiation. Every run includes two process: temperature-rise and 
temperature-fall period. The simulated sunlight power density is about 1.5 kW/m2. The 
sponge size is 2  2  1 cm. The environment humidity is 60%. All the experiments were 
executed at room temperature. The self-heating sponges still possess excellent 
photothermal conversion effect under multiple cycles of simulated sunlight on-off cycles, 
demonstrating that the PDA coating is very stable and robust without any damages after 
multiple photothermal conversion processes.

Figure S6. Time-dependent temperature evolution curves and IR images of high viscosity 
crude oil under sunlight irradiation. The orange and blue region in left image represent 
temperature-rise and temperature-fall period, respectively. The environment humidity is 
60%. All the experiments were executed at room temperature. It clearly shows the crude 
oil temperature only increases about 4 C after 60 s sunlight irradiation, indicating crude 
oil has the low photothermal conversion efficiency.
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Figure S7. Recovery of high viscosity crude oil from (a) the PDMS-coated and (b) the 
PDMS/PDA-coated sponges by compressing corresponding sponge strain under the 
simulated sunlight irradiation. Before the strain experiment, PDMS-coated and the 
PDMS/PDA-coated sponges first adsorp the equal crude oils. The simulated sunlight 
power density is about 1.5 kW/m2. The sponge size is 2  2  1 cm. The environment 
humidity is 60%. All the experiments were executed under room temperature. It can be 
seen that the crude oils can be immediately squeezed from the PDMS/PDA-coated 
sponges when the sponges are compressed by 20 % of strain. With increasing the 
compressive time, a growing amount of crude oils are extruded, indicating that the 
adsorbed crude oils can be high-efficiently recovered. In contrast, there are no crude oils 
outflowed from the PDMS-coated sponges upon the same compressive force.
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Figure S8 Influence of the sponge height on adsorption capability of the crude oil. The 

contact area between the crude oil and the sponge is kept the same (22 cm2). The 

adsorption time is 3 min. It is obvious that the adsorption capability of the crude oil 

gradually decreases along with the increase of sponge height due to the increase of the 

thermal conductive pathway. Therefore, we found a suitable sponge height with the value 

of 1 cm in our experiments, so as to achieve a relatively high adsorption capability. 

Inspired by this, increasing thermal conductivity of the material is a good idea to enhance 

the adsorption capability.
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(a)

(b)

Figure S9. Digital images for the process of absorption and collection of non-polar 
solvent (dyed with oil red) from the surface of water: (a) n-hexane and (b) 1, 2-
dichloroethane.

Figure S10. (a) Cyclic compressive stress-strain curves of self-heating sponge. (b) Digital 
photographs of self-heating sponge during the compression process. The environment 
humidity is 60%. All the experiments were executed at room temperature. It can be seen 
that the stress-strain curves almost overlap with the initial state after 50 experimental 
cycles, and the sponge shape can be well recovered even after multiple compression-
recovery cycles. These results suggest that our self-heating sponges possess excellent 
elastic property and flexibility, which enables the materials with good manipulation 
processibility for device fabrication and oil recovery.
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Figure S11. Water contact angle of PDMS/PDA-coated sponges after multiple adsorption-
desorption cycles.


