Supporting Information

Sulfur Nanodots as Antiblocking Agent of MoS_2 for Stable Sodium Ion Battery Anodes

Zhanwei Xu, *^a Kai Yao,^a Zhi Li,^b Licai Fu,^c Hao Fu,^a Jia Li,^c Liyun Cao,^a and Jianfeng Huang *^a

^a School of Materials Science and Engineering, Shaanxi University of Science and

Technology, Xi'an 710021, China

^b Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G

2 V4, Canada

^c College of Material Science and Engineering, Hunan University, Changsha 410082,

China.

*E-mail: xuzhanwei@sust.edu.cn; huangjf@sust.edu.cn

Figure S1. Diagram for the synthesis of the S/MoS_2 in a horizon tube furnace with two heating zones at the atmosphere of argon. A mixture of sulfur and ammonium molybdate as the starting materials for synthesis of MoS_2 was placed in the behind zone. Sulfur for deposition placed in the front zone was sublimed after heating.

Figure S2. TGA curves of the S/MoS_2 with S as a baseline.

Figure S3. (a) SEM micrograph, and (b) HRTEM image of the MoS_2 .

Figure S4. (a) TEM image and elemental mappings of (b) S, (c) Mo in the S/MoS_2 .

Figure S5. CV curves of (a) S/MoS_2 and (b) pure MoS_2 .

The cycle voltammetry (CV) curves of the S/MoS₂ architectures and the pure MoS₂ display in Figure S5. The CV curves of the S/MoS₂ architectures and pure MoS₂ at the first scan show a broadening peak at 1.2 V corresponding to Na⁺ intercalation to interlayer of MoS₂. A sharp and strong peak appears at 0.75 V, indicating MoS₂ conversion to Mo and Na₂S.¹⁶ A very sharp and narrow reduction peak at 0.005 V appeared during the first negative scan contribute to Na⁺ storage in the interface between Na₂S and Mo.³¹ From the second negative scan, the broad wave occurred at 0.75 V, suggesting formed SEI.

Figure S6. (a) CV curves and (b) galvanostatic discharge/charge profiles of the baseline S.

Figure S7 .XRD patterns of the fresh S/MoS₂ electrodes, discharged electrodes and charged electrodes.

The ex-situ XRD was carried out to study electrochemical mechanism of the S/MoS₂ electrodes. The cells were discharged to 0.01 V and charged to 3.00 V when they 50 cycled. Before XRD measurements, the electrodes were cleaned with DMC and were scraped off the active substance (fresh electrodes as a comparison). The XRD pattern of the fresh S/MoS₂ electrodes displays the strong peaks at 14.40°, 32.70°, 39.56°, 45.00°, assigned to the 2-H MoS₂ crystal (JCPDS 65-0160). The peak appears at 25.85° corresponding to sulfur (JCPDS 08-0247). After charged to 0.01 V, the three week peaks at 12.41°, 16.46°, 31.21° are indexed to Na₂S₅ (JCPDS 27-0792). Different from the conversion reaction of general MoS₂ in SIB to obtain Na₂S. Obtaining Na₂S₅ is possibly because S is involved in the conversion reaction.¹⁶ The S in the electrodes can be observed when the electrodes were charged to 3.00 V, corresponding diffraction peaks at 14.38°, 20.79°, 24.25°, 27.85° and 29.51°, which indicates reversible transformation of S during discharge/charge. The peaks of MoS₂ are also observed, demonstrating S/MoS₂ electrochemically reacts with Na⁺ through reversible conversion reaction.^{16, 51}

Figure S8 .Rama spectra of as-prepared S/MoS_2 composite and the S/MoS_2 electrode after 50 cycles.

Materials	Cycles	R _e	R _{sei}	R _{ct}
S/MoS ₂	5	13.31	28.21	72.89
	20	11.4	44.83	158.2
MoS ₂	5	5.98	15.14	43.56
	50	22.57	105.80	537.00

Table S1. Typical Randles circuit resistance values of S/MoS_2 and bare MoS_2 after 5 cycles and 50 cycles.

Materials	Synthesis method	Current density [mA g ⁻¹]	Capacity [mAh g ⁻¹]	Voltage [V]	Reference
S/MoS ₂	S nanodots deposited on few-layer MoS_2	100, 500, 1000, 2000	482, 366, 286, 238	0.01-3	This work
MoS ₂ @AMCRs	Few-layer MoS ₂ anchored at nitrogen-doped carbon ribbons by pyrosis step	50, 100, 500, 1000, 2000	450, 425, 350, 310, 300	0.01-3	Pang et al. [48]
MoS ₂ /Graphene	Acid-exfoliated few-layer molybdenum disulfide and reduced graphene oxide flakes	25, 200	240, 173	0.01-2.25	David et al. [10]
Few-layer MoS ₂ nanosheets	Liquid-Phase Exfoliation by NMP	10, 20, 40, 200, 400, 800	180, 165, 160, 140, 125, 115	0.4-2.8	Bang et al. [49]
MoS ₂ -x nm-TiO ₂	ALD TiO ₂ -Coated Flower-like MoS ₂ Nanosheets on Carbon Cloth	500	280	0.01-2.5	Ren et al. [50]
freestanding MoS2@C	molybdenum disulfide nanosheets aligned vertically on carbon paper	40, 80, 320, 640, 1000	348, 321, 271, 230, 205	0.01-3	Xie et al. [51]
Micro-MoS ₂	Na intercalation in MoS ₂	50, 100, 150	420, 339, 290	0.01-3	Wang et al. [52]
MoS ₂ Nanoflowers	Hydrothermal method	50, 200, 1000	350, 320, 300	0.4-3	Hu et al. [15]
Ultrathin MoS ₂ Nanosheets	Exfoliation of MoS ₂	40, 80, 160, 320	500, 330, 305, 251	0.01-3	Su et al. [21]
MoS ₂ –PEO	Interlayer expanded by insertion of PEO	250, 500, 1000	140, 125, 110	0.4-3	Li et al. [24]
Freestanding Metallic 1T MoS ₂	the metallic 1T MoS ₂ sandwich grown on graphene tube	500, 800, 1000, 1500, 2000	241, 222, 208, 190, 175	0.01-3	Geng et al. [12]

 $\label{eq:solution} \textbf{Table S2.} Comparison of the capacity values of the S/MoS_2 with the state-of-the-art MoS_2 in literatures.$