Electronic supplementary information

A general strategy to synthesize high-level N-doped porous carbons *via* Schiff-base chemistry for supercapacitors

Dazhang Zhu,[†]^a Juxiang Jiang,[†]^a Dongmei Sun,^b Xiaoyu Qian,^a Yawei Wang,^a Liangchun Li,^a Zhiwei Wang,^c Xiaolan Chai,^a Lihua Gan,^a, * and Mingxian Liu^{a, c}, *

^aShanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and

Engineering, Tongji University, Shanghai, 200092, P. R. China.

^bSchool of Life Science & Technology, Tongji University, 1239 Siping Road, Shanghai 200092,P. R. China.

^cShanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China

*Corresponding Author

E-mail: ganlh@tongji.edu.cn; liumx@tongji.edu.cn

[†]These authors contributed equally to this work.

Fig. S1 TGA analysis of Schiff-base polymer spheres in nitrogen atmosphere.

Fig. S2 XRD patterns (a) and Raman spectra (b) of N-MCSs.

Fig. S3 N_2 adsorption/desorption isotherms (a) and pore size distribution curves of $N-MCS_X$ (b).

Samples	$S_{\rm BET} ({ m m}^2 { m g}^{-1})$	$S_{\text{micropore}} (\mathrm{m}^2 \mathrm{g}^{-1})$	$P_{\text{ultramicropore}}$ (nm)	$P_{\text{supermicropore}}(\text{nm})$	$V_{\text{total}} (\text{cm}^3 \text{ g}^{-1})$
N-MCS ₆₀₀	768	752	0.56	0.86,1.24	0.32
N-MCS ₇₀₀	1478	1412	0.57	0.86,1.26	0.76
N-MCS ₈₀₀	2431	2316	0.55	0.81,1.19	1.34
N-MCS ₉₀₀	1597	1534	0.53	0.80,1.27	0.81

Table S1. Pore structure parameters of $N-MCS_X$.

Fig. S4 Wide-scan XPS spectra (a) and fitted high-solution XPS spectra of N 1s for N-MCS₆₀₀ (b), N-MCS₇₀₀ (c), N-MCS₈₀₀ (c), N-MCS₉₀₀ (d).

Samples	С	N	0	N-6 (%)	N-5(%)	N-Q (%)	N-X (%)	N-Ox (%)
	(at.%)	(at.%)	(at.%)	398.4eV	400.5eV	401.0 eV	402.6 eV	405.5 eV
N-MCS ₆₀₀	78.60	8.83	12.57	28.27	41.50	22.73	-	7.50
N-MCS ₇₀₀	83.40	8.71	7.89	32.25	32.47	19.41	5.80	10.09
N-MCS ₈₀₀	89.96	5.10	4.94	28.78	22.01	20.38	12.80	16.02
N-MCS ₉₀₀	89.84	3.48	6.68	31.11	27.66	17.33	12.62	11.25

Table S2. Elemental compositions of C, N, and O, and relative contents of nitrogen species to N 1s in N-MCS $_X$.

Fig. S5 CV curves (a) at 10 mV s⁻¹, GCD curves at 1.0 A g^{-1} (b) of N-MCS_{*X*} electrodes in 6 M KOH electrolyte, and the curves of specific capacitance against the current densities (c).

Fig. S6 Nyquist plots of N-MCS_{*X*} electrodes with frequency range of 10^5 to 10^{-2} Hz.

Fig. S7 FT-IR spectra of Schiff-base polymer A and B.

Fig. S8 TGA analysis of Schiff-base polymer A (a) and B (b) in nitrogen atmosphere.

Samples	$S_{\rm BET} ({ m m}^2~{ m g}^{-1})$	$S_{\rm micropore} ({ m m}^2 { m g}^{-1})$	Pore size (nm)	$V_{\text{total}}(\text{cm}^3\text{ g}^{-1})$
N-FPC ₆₅₀	857	820	0.81, 1.27	0.47
N-FPC ₇₀₀	1387	870	0.71, 1.58, 2.15	1.27
N-FPC ₇₅₀	1751	1597	0.82, 0.82, 1.59, 1.99	1.03
N-FPC ₈₀₀	2552	1883	0.80, 1.23, 2.75	2.07
N-MPC ₆₅₀	640	297	0.60, 1.37,2.72	0.26
N-MPC ₇₀₀	740	606	0.68, 0.81, 1.28	0.50
N-MPC ₇₅₀	1552	1142	0.50, 0.80, 1.34, 2.72	1.96
N-MPC ₈₀₀	974	731	0.68, 0.81, 1.28, 2.72	0.81

Table S3. Pore structure parameters of N-FPC_X and N-MPC_X.

Fig. S9 Wide-scan XPS spectra (a) and fitted high-solution XPS spectra of N 1s for N-FPC₆₅₀ (b), N-FPC₇₀₀ (c), N-FPC₇₅₀ (d), N-FPC₈₀₀ (e).

Fig. S10 Wide-scan XPS spectra (a) and fitted high-solution XPS spectra of N 1s for N-MPC₆₅₀ (b), N-MPC₇₀₀ (c), N-MPC₇₅₀ (d), N-MPC₈₀₀ (e).

Samplas	С	Ν	0	N-6 (%)	N-5 (%)	N-Q (%)	N-X (%)	N-Ox (%)
Samples	(at.%)	(at.%)	(at.%)	398.4 eV	400.5 eV	401.0 eV	402.6 eV	405.5 eV
N-FPC ₆₅₀	79.97	8.12	11.91	31.79	36.94	21.19		10.08
N-FPC ₇₀₀	85.67	7.53	6.81	23.34	38.51	19.89	11.90	6.35
N-FPC ₇₅₀	81.13	5.56	13.31	24.35	40.87	25.14	6.6	3.0
N-FPC ₈₀₀	89.69	3.79	6.51	27.01	26.70	30.65	6.27	9.38
N-MPC ₆₅₀	79.36	8.29	12.36	34.66	40.38	19.74		5.2
N-MPC ₇₀₀	83.44	7.20	9.36	15.66	32.26	13.25	28.41	10.41
N-MPC ₇₅₀	83.22	5.61	11.17	17.78	35.09	29.2	13.01	4.89
N-MPC ₈₀₀	92.10	3.96	3.94	17.35	27.46	22.53	22.23	10.41

Table S4. Elemental compositions of C, N, and O, and relative contents of nitrogen species to N 1s in N-FPC_X and N-MPC_X.

Fig. S11 CV curves at 10 mV s⁻¹ (a, c), GCD curves at 1.0 A g⁻¹ (b, d), the curves of specific capacitance against the current densities (e, f), and Nyquist plots (g, h) of N-FPC_X (a, b, e, g) and N-MPC_X (c, d, f, h) electrodes in 6 M KOH electrolyte.

Samples	Specific capacitance (F g ⁻¹)	Samples	Specific capacitance (F g^{-1})
N-FPC ₆₅₀	188	N-MPC ₆₅₀	115
N-FPC ₇₀₀	277	N-MPC ₇₀₀	160
N-FPC ₇₅₀	238	N-MPC ₇₅₀	262
N-FPC ₈₀₀	210	N-MPC ₈₀₀	178

Table S5. Specific capacitances of N-FPC_{*X*} and N-MPC_{*X*} electrodes at 1.0 A g^{-1} in 6 M KOH electrolyte.

Fig. S12 CV curves at different scan rates (a, c, e), GCD curves at different current densities (b, d, f), Nyquist plots with frequency range of 10^5 to 10^{-2} Hz (g), and Ragone plots (h) of N-MCS-200 (a, b), N-FPC₇₀₀ (c, d) and N-MPC₇₅₀ (e, f) electrodes using 6 M KOH electrolyte in a two-electrode cell.