## **Supporting Information**

Synthesis of hierarchical structured Fe<sub>2</sub>O<sub>3</sub> rod clusters with numerous empty nanovoids via the Kirkendall effect and their electrochemical properties for lithium-ion storage

Seung-Keun Park, Jae Hun Choi and Yun Chan Kang\*

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

\*Correspondence authors. E-mail: yckang@korea.ac.kr (Yun Chan Kang, Fax: (+82) 2-928-3584)



**Fig. S1** Morphologies and crystal structure of FeSe<sub>2</sub> rod clusters: (a) SEM image, (b, c) TEM images, (d) HR-TEM image (e) SAED pattern, and (f) elemental mapping images.



Fig. S2 XRD patterns of FeSe<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>-A300 oxidized for 10 min, and Fe<sub>2</sub>O<sub>3</sub>-A300, -A400, -A500, and -A600 rod clusters oxidized for 3 hrs.



Fig. S3 SEM images of Fe<sub>2</sub>O<sub>3</sub>-A300, -A400, -A500, and -A600 rod clusters.



Fig. S4 Morphologies and crystal structure of Fe<sub>2</sub>O<sub>3</sub>-A300 rod clusters: (a, b) TEM images,

(c) HR-TEM image (d) SAED pattern, and (e) elemental mapping images.



Fig. S5 XPS survey scan of (a) Fe<sub>2</sub>O<sub>3</sub>-A400 and (b) Fe<sub>2</sub>O<sub>3</sub>-A500 rod clusters.



Fig. S6 TGA curves of Fe<sub>2</sub>O<sub>3</sub>-A400 and -A500 rod clusters.



**Fig. S7** (a) N<sub>2</sub> adsorption and desorption isotherms and (b) BJH pore size distributions of FeSe<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>-A300, -A400, -A500, and -A600 rod clusters.



**Fig. S8** CV curves of Fe<sub>2</sub>O<sub>3</sub>-A600 rod clusters obtained at 0.1 mV s<sup>-1</sup> in the potential range of 0.001 - 3.0 V for the first, second, and fifth cycles.



**Fig. S9** SEM images of (a, b) Fe<sub>2</sub>O<sub>3</sub>-A400, (c, d) -A500, and (e, f) -A600 rod clusters after 100 cycles.

## Equivalent circuit model



R<sub>e</sub>: the electrolyte resistance, corresponding to the intercept of high frequency semicircle at Z' axis

Rf: the SEI layer resistance corresponding to the high-frequency semicircle

Q<sub>1</sub>: the dielectric relaxation capacitance corresponding to the high-frequency semicircle

R<sub>ct</sub>: the denote the charger transfer resistance related to the middle-frequency semicircle

 $Q_2$ : the associated double-layer capacitance related to the middle-frequency semicircle  $Z_w$ : the Li-ion diffusion resistance

Fig. S10 Randle-type equivalent circuit model used for AC impedance fitting.

| Samples                              | Fe (wt %) | Se (wt %) | O (wt %) | Total |
|--------------------------------------|-----------|-----------|----------|-------|
| FeSe <sub>2</sub> rod clusters       | 28.5      | 71.2      | 0.3      | 100   |
| Fe <sub>2</sub> O <sub>3</sub> -A300 | 44.1      | 38.4      | 17.5     | 100   |
| Fe <sub>2</sub> O <sub>3</sub> -A400 | 65.0      | 7.7       | 27.3     | 100   |
| Fe <sub>2</sub> O <sub>3</sub> -A500 | 69.4      | 1.4       | 29.2     | 100   |
| Fe <sub>2</sub> O <sub>3</sub> -A600 | 70.2      | 0.0       | 29.8     | 100   |

**Table S1.** Chemical composition of FeSe<sub>2</sub>, and Fe<sub>2</sub>O<sub>3</sub>-A300, -A400, -A500, and A600 rod clusters (based on the EDX quantitative data)

**Table S2.** Electrochemical properties of the  $Fe_2O_3$  materials with various structures as anode materials for LIBs.

| Materials                                                                               | Voltage<br>range [V] | Current rate<br>[A g <sup>-1</sup> ] | Discharge<br>capacity after<br>cycling<br>[mA h g <sup>-1</sup> ] | Rate capability<br>[mA h g <sup>-1</sup> ]<br>/[A g <sup>-1</sup> ] | Ref         |
|-----------------------------------------------------------------------------------------|----------------------|--------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-------------|
| Porous Fe <sub>2</sub> O <sub>3</sub> rod<br>clusters                                   | 0.001 - 3.0          | 1.0                                  | 1381 (200 <sup>th</sup> )                                         | 745 (10.0 A g <sup>-1</sup> )                                       | Our<br>work |
| Hollow Fe <sub>2</sub> O <sub>3</sub> spheres                                           | 0.05-3.0             | 0.2                                  | 710 (100 <sup>th</sup> )                                          | -                                                                   | 1           |
| Hierarchical hollow<br>spheres composed of<br>Fe <sub>2</sub> O <sub>3</sub> nanosheets | 0.01-3.0             | 0.5                                  | 815 (200 <sup>th</sup> )                                          | 330 (5.0 A g <sup>-1</sup> )                                        | 2           |
| Hierarchical Fe <sub>2</sub> O <sub>3</sub><br>microboxes                               | 0.005-3.0            | 0.2                                  | 945 (30 <sup>th</sup> )                                           | -                                                                   | 3           |
| Hollow Fe <sub>2</sub> O <sub>3</sub><br>nanospheres                                    | 0.01-3.0             | 0.25                                 | 490 (50 <sup>th</sup> )                                           | -                                                                   | 4           |
| Hollow Fe <sub>2</sub> O <sub>3</sub><br>nanobarrels                                    | 0.01-3.0             | 0.5                                  | 916 (100 <sup>th</sup> )                                          | 403 (10.0 A g <sup>-1</sup> )                                       | 5           |
| Multi-shelled hollow<br>Fe2O3 spheres                                                   | 0.05-3.0             | 0.4                                  | 861 (50 <sup>th</sup> )                                           | 294 (4.0 A g <sup>-1</sup> )                                        | 6           |
| Graphene-constructed hollow Fe <sub>2</sub> O <sub>3</sub> spheres                      | 0.01-3.0             | 0.1                                  | 950 (50 <sup>th</sup> )                                           | 640 (1.0 A g <sup>-1</sup> )                                        | 7           |
| Carbon coated hollow<br>Fe <sub>2</sub> O <sub>3</sub> sphere                           | 0.01-3.0             | 0.3                                  | 950 (100 <sup>th</sup> )                                          | -                                                                   | 8           |
| Fe <sub>2</sub> O <sub>3</sub> nanorods                                                 | 0.005-3.0            | 0.5                                  | 970 (100 <sup>th</sup> )                                          | 300 (5.0 A g <sup>-1</sup> )                                        | 9           |
| Spindle-like Fe <sub>2</sub> O <sub>3</sub>                                             | 0.01-3.0             | 0.2                                  | 911 (50 <sup>th</sup> )                                           | 424 (10.0 A g <sup>-1</sup> )                                       | 10          |
| Fe <sub>2</sub> O <sub>3</sub> nanoparticle-<br>loaded carbon<br>nanofibers             | 0.05-2.8             | 0.05                                 | 488 (75 <sup>th</sup> )                                           | 288 (0.5 A g <sup>-1</sup> )                                        | 11          |
| Fe <sub>2</sub> O <sub>3</sub> nano-<br>assembled spindles                              | 0.005-3.0            | 0.1                                  | ~900 (40 <sup>th</sup> )                                          | 430 (1.0 A g <sup>-1</sup> )                                        | 12          |

## References

- 1. B. Wang, J. S. Chen, H. B. Wu, Z. Y. Wang and X. W. Lou, *J. Am. Chem. Soc.*, 2011, **133**, 17146-17148.
- 2. J. X. Zhu, Z. Y. Yin, D. Yang, T. Sun, H. Yu, H. E. Hoster, H. H. Hng, H. Zhang and Q. Y. Yan, *Energy Environ. Sci.*, 2013, **6**, 987-993.
- 3. L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng and X. W. Lou, J. Am. Chem. Soc., 2012, 134, 17388-17391.
- 4. M. Sasidharan, N. Gunawardhana, M. Yoshio and K. Nakashima, *Ionics*, 2013, **19**, 25-31.
- 5. K. S. Lee, S. Park, W. Lee and Y. S. Yoon, ACS Appl. Mater. Interfaces, 2016, 8, 2027-2034.

- 6. Z. Padashbarmchi, A. H. Hamidian, H. W. Zhang, L. Zhou, N. Khorasani, M. Kazemzad and C. Z. Yu, *RSC Adv.*, 2015, **5**, 10304-10309.
- Y. W. Chen, J. Z. Wang, J. Z. Jiang, M. A. Zhou, J. Zhu and S. Han, *RSC Adv.*, 2015, 5, 21740-21744.
- 8. Z. J. Du, S. C. Zhang, J. F. Zhao, X. M. Wu and R. X. Lin, *J. Nanosci. Nanotechno.*, 2013, **13**, 3602-3605.
- 9. Y. M. Lin, P. R. Abel, A. Heller and C. B. Mullins, J. Phys. Chem. Lett., 2011, 2, 2885-2891.
- 10. X. Xu, R. Cao, S. Jeong and J. Cho, *Nano Lett.*, 2012, **12**, 4988-4991.
- 11. L. W. Ji, O. Toprakci, M. Alcoutlabi, Y. F. Yao, Y. Li, S. Zhang, B. K. Guo, Z. Lin and X. W. Zhang, *ACS Appl. Mater. Interfaces*, 2012, **4**, 2672-2679.
- 12. A. Banerjee, V. Aravindan, S. Bhatnagar, D. Mhamane, S. Madhavi and S. Ogale, *Nano Energy*, 2013, **2**, 890-896.