Electronic Supplementary Information

Stannate Derived Bimetallic Nanoparticles for Electrocatalytic CO₂ Reduction

Xiaolong Zhang,^a Fengwang Li,^{a,b} Ying Zhang,^{a,b} Alan M. Bond,^{a,b} Jie Zhang^{a,b}*

^aSchool of Chemistry, Monash University, Clayton 3800, Victoria, Australia.

^bARC Centre of Excellence for Electromaterials Science, Monash University, Clayton 3800, Victoria, Australia.

*Email: jie.zhang@monash.edu

Figure S1. Powder XRD patterns of metal stannates calcined at 350 °C.

Figure S2. Powder XRD pattern of the Mn-Sn bimetallic catalyst derived from MnSnO₃ (black trace) and the standard JCPDS pdf card of MnSn₂ (65-2701) and Sn (89-4898).

Figure S3. Powder XRD pattern of the Co-Sn bimetallic catalyst derived from CoSnO₃ (black trace) and the standard JCPDS pdf card of CoSn (65-6225).

Figure S4. Powder XRD pattern of the Ni-Sn bimetallic catalyst derived from NiSnO₃ (black trace) and the standard JCPDS pdf card of Ni₃Sn (65-9703) and Sn (89-4898).

Figure S5. Powder XRD pattern of the Cu-Sn bimetallic catalyst derived from CuSnO₃ (black trace) and the standard JCPDS pdf card of CuSn (65-3434).

Figure S6. Powder XRD pattern of the Zn-Sn bimetallic catalyst derived from ZnSnO₃ (black trace) and the standard JCPDS pdf card of Zn (65-5973) and Sn (89-4898).

Figure S7. Powder XRD pattern of the Ag-Sn bimetallic catalyst derived from Ag₂SnO₃ (black trace) and the standard JCPDS pdf card of Ag₃Sn (71-530) and Sn (89-4898).

Figure S8. Powder XRD pattern of the Cd-Sn bimetallic catalyst derived from CdSnO₃ (black trace) and the standard JCPDS pdf card of Cd (85-1328) and Sn (89-4898).

Figure S9. Powder XRD pattern of the Pb-Sn bimetallic catalyst derived from PbSnO₃ (black trace) and the standard JCPDS pdf card of Pb (87-663) and Sn (89-4898).

Figure S10. Cyclic voltammetry at Metal-Sn bimetallic catalyst modified GC disc electrodes in a CO₂ saturated 0.5M NaHCO₃ solution.

Figure S11. Selected area diffraction of Cu-Sn (a) and Ag-Sn (b).

Figure S12. Partial current distribution as a function of applied potential for the Cu-Sn (a) and Ag-Sn (b) catalysts in a CO₂ saturated 0.5M NaHCO₃ aqueous solution.

Figure S13. TEM images of Ag₂SnO₃/GO (a,b) and CuSnO₃/GO (c,d).

Figure S14. TEM images of Cu-Sn/rGO (a,b) and Ag-Sn/rGO (c,d) after electrolysis.

Table S1. Comparison of Sn based formate-selective CO₂ reduction catalysts in literature.

Figure S1. Powder XRD patterns of metal stannates calcined at 350 °C.

Figure S2. Powder XRD pattern of the Mn-Sn bimetallic catalyst derived from MnSnO₃ (black trace) and the standard JCPDS pdf card of MnSn₂ (65-2701) and Sn (89-4898).

Figure S3. Powder XRD pattern of the Co-Sn bimetallic catalyst derived from CoSnO₃ (black trace) and the standard JCPDS pdf card of CoSn (65-6225).

Figure S4. Powder XRD pattern of the Ni-Sn bimetallic catalyst derived from NiSnO₃ (black trace) and the standard JCPDS pdf card of Ni₃Sn (65-9703) and Sn (89-4898).

Figure S5. Powder XRD pattern of the Cu-Sn bimetallic catalyst derived from CuSnO₃ (black trace) and the standard JCPDS pdf card of CuSn (65-3434).

Figure S6. Powder XRD pattern of the Zn-Sn bimetallic catalyst derived from ZnSnO₃ (black trace) and the standard JCPDS pdf card of Zn (65-5973) and Sn (89-4898).

Figure S7. Powder XRD pattern of the Ag-Sn bimetallic catalyst derived from Ag₂SnO₃ (black trace) and the standard JCPDS pdf card of Ag₃Sn (71-530) and Sn (89-4898).

Figure S8. Powder XRD pattern of the Cd-Sn bimetallic catalyst derived from CdSnO₃ (black trace) and the standard JCPDS pdf card of Cd (85-1328) and Sn (89-4898).

Figure S9. Powder XRD pattern of the Pb-Sn bimetallic catalyst derived from PbSnO₃ (black trace) and the standard JCPDS pdf card of Pb (87-663) and Sn (89-4898).

Figure S10. Cyclic voltammetry at metal-Sn bimetallic catalyst modified GC disc electrodes in a CO₂ saturated 0.5M NaHCO₃ solution.

Figure S11. Selected area diffraction of Cu-Sn (a) and Ag-Sn (b).

Figure S12. Partial current distribution as a function of applied potential for the Cu-Sn (a) and Ag-Sn (b) catalysts in a CO₂ saturated 0.5M NaHCO₃ aqueous solution.

Figure S13. TEM images of Ag₂SnO₃/GO (a,b) and CuSnO₃/GO (c,d).

Figure S14. TEM images of Cu-Sn/rGO (a,b) and Ag-Sn/rGO (c,d) after electrolysis.

Catalyst	Electrolyte	Potential	Maximum FE _{formate} (%)	Current density (mA cm ⁻²)	Electrode substrate	Ref.
Stannate derived	0.5 M	-1.04 V	86	10.4	Glassy carbon	This
Cu-Sn	NaHCO ₃	vs. RHE			plate	work
Stannate derived	0.5 M	-0.94 V	85	9.6	Glassy carbon	This
Ag-Sn	NaHCO ₃	vs. RHE			plate	work
Cu-Sn/rGO	0.5 M	-0.99 V	87	23.6	Glassy carbon	This
	NaHCO ₃	vs. RHE			plate	work
Ag-Sn/rGO	0.5 M	-0.94 V	88	21.3	Glassy carbon	This
	NaHCO ₃	vs. RHE			plate	work
$Ag_{76}Sn_{24}$	0.5 M	-0.8 V vs.	80	15.6	Carbon paper	1
	NaHCO ₃	RHE				
Sn dendrite	0.1 M	-1.36 V	71.6	17.1	Sn foil	2
	KHCO ₃	vs. RHE				
Electrodeposited	0.5 M	-1.36 V	78.8	57.3	Carbon paper	3
Sn _{56.3} Pb _{43.7}	KHCO ₃	vs. RHE				
Mesoporous SnO ₂	0.5 M	-1.0 V vs.	87	45	Carbon cloth	4
	NaHCO ₃	RHE				
Sn/SnO _x	0.5 M	-0.7 V vs.	58	1.8	Sn plate	5
	NaHCO ₃	RHE				
Sn/graphene	0.1 M	-1.16 V	89	21.1	Glassy carbon	6
	NaHCO ₃	vs. RHE			plate	
Polycrystalline Sn	0.1 M	-1.08 V	58	5	N/A	7
	KHCO ₃	vs. RHE				
$[Fe_4N(CO)_{12}]^-$	0.1 M	-1.2 V vs.	96	3.8	Glassy carbon	8
	KHCO ₃	SCE				
$IrHL(S)_2$	5:95 v/v	-1.65 V	93	0.6	Glassy carbon	9
	H ₂ O/MeCN	vs. SCE		-		
$[CpCo(P^{R}_{2}NR'_{2})I]^{+}$	DMF/water	-2.2 V vs.	90 ± 10	~3	Glassy carbon	10
		Fc/Fc ⁺				

Table S1. Comparison of our catalysts with Sn based formate-selective CO_2 reduction catalysts reported in literature.

Reference

- 1. W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang and F. Jiao, *Journal of the American Chemical Society*, 2017, **139**, 1885-1893.
- 2. D. H. Won, C. H. Choi, J. Chung, M. W. Chung, E.-H. Kim and S. I. Woo, *ChemSusChem*, 2015, **8**, 3092-3098.
- 3. S. Y. Choi, S. K. Jeong, H. J. Kim, I. H. Baek and K. T. Park, Acs Sustainable Chemistry & Engineering, 2016, 4, 1311-1318.
- 4. F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and J. Zhang, *Angew Chem Int Ed Engl*, 2017, **56**, 505-509.
- 5. Y. Chen and M. W. Kanan, *Journal of the American Chemical Society*, 2012, **134**, 1986-1989.
- 6. F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei and Y. Xie, *Nature Communications*, 2016, **7**, 12697.

- 7. Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, *Electrochimica Acta*, 1994, **39**, 1833-1839.
- 8. A. Taheri, E. J. Thompson, J. C. Fettinger and L. A. Berben, *ACS Catalysis*, 2015, **5**, 7140-7151.
- 9. P. Kang, C. Cheng, Z. Chen, C. K. Schauer, T. J. Meyer and M. Brookhart, *Journal of the American Chemical Society*, 2012, **134**, 5500-5503.
- 10. S. Roy, B. Sharma, J. Pécaut, P. Simon, M. Fontecave, P. D. Tran, E. Derat and V. Artero, *Journal of the American Chemical Society*, 2017, **139**, 3685-3696.