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Figure S1. Powder XRD patterns of metal stannates calcined at 350 oC.

Figure S2. Powder XRD pattern of the Mn-Sn bimetallic catalyst derived from MnSnO3 

(black trace) and the standard JCPDS pdf card of MnSn2 (65-2701) and Sn (89-4898).

Figure S3. Powder XRD pattern of the Co-Sn bimetallic catalyst derived from CoSnO3 

(black trace) and the standard JCPDS pdf card of CoSn (65-6225).

Figure S4. Powder XRD pattern of the Ni-Sn bimetallic catalyst derived from NiSnO3 

(black trace) and the standard JCPDS pdf card of Ni3Sn (65-9703) and Sn (89-4898).

Figure S5. Powder XRD pattern of the Cu-Sn bimetallic catalyst derived from CuSnO3 

(black trace) and the standard JCPDS pdf card of CuSn (65-3434).

Figure S6. Powder XRD pattern of the Zn-Sn bimetallic catalyst derived from ZnSnO3 

(black trace) and the standard JCPDS pdf card of Zn (65-5973) and Sn (89-4898).

Figure S7. Powder XRD pattern of the Ag-Sn bimetallic catalyst derived from Ag2SnO3 

(black trace) and the standard JCPDS pdf card of Ag3Sn (71-530) and Sn (89-4898).

Figure S8. Powder XRD pattern of the Cd-Sn bimetallic catalyst derived from CdSnO3 

(black trace) and the standard JCPDS pdf card of Cd (85-1328) and Sn (89-4898).
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Figure S9. Powder XRD pattern of the Pb-Sn bimetallic catalyst derived from PbSnO3 

(black trace) and the standard JCPDS pdf card of Pb (87-663) and Sn (89-4898).

Figure S10. Cyclic voltammetry at Metal-Sn bimetallic catalyst modified GC disc 

electrodes in a CO2 saturated 0.5M NaHCO3 solution.

Figure S11. Selected area diffraction of Cu-Sn (a) and Ag-Sn (b).

Figure S12. Partial current distribution as a function of applied potential for the Cu-Sn (a) 

and Ag-Sn (b) catalysts in a CO2 saturated 0.5M NaHCO3 aqueous solution.

Figure S13. TEM images of Ag2SnO3/GO (a,b) and CuSnO3/GO (c,d).

Figure S14. TEM images of Cu-Sn/rGO (a,b) and Ag-Sn/rGO (c,d) after electrolysis.

Table S1. Comparison of Sn based formate-selective CO2 reduction catalysts in literature.
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Figure S8. Powder XRD pattern of the Cd-Sn bimetallic catalyst derived from CdSnO3 

(black trace) and the standard JCPDS pdf card of Cd (85-1328) and Sn (89-4898).
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Figure S12. Partial current distribution as a function of applied potential for the Cu-Sn (a) 
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Figure S14. TEM images of Cu-Sn/rGO (a,b) and Ag-Sn/rGO (c,d) after electrolysis.



Table S1. Comparison of our catalysts with Sn based formate-selective CO2 reduction 

catalysts reported in literature.

Catalyst Electrolyte Potential Maximum 
FEformate 
(%)

Current 
density (mA 
cm-2)

Electrode 
substrate

Ref.

Stannate derived 
Cu-Sn

0.5 M 
NaHCO3

-1.04 V 
vs. RHE

86 10.4 Glassy carbon 
plate

This 
work

Stannate derived 
Ag-Sn

0.5 M 
NaHCO3

-0.94 V 
vs. RHE

85 9.6 Glassy carbon 
plate

This 
work

Cu-Sn/rGO 0.5 M 
NaHCO3

-0.99 V 
vs. RHE

87 23.6 Glassy carbon 
plate

This 
work

Ag-Sn/rGO 0.5 M 
NaHCO3

-0.94 V 
vs. RHE

88 21.3 Glassy carbon 
plate

This 
work

Ag76Sn24 0.5 M 
NaHCO3

-0.8 V vs. 
RHE

80 15.6 Carbon paper 1

Sn dendrite 0.1 M 
KHCO3

-1.36 V 
vs. RHE

71.6 17.1 Sn foil 2

Electrodeposited 
Sn56.3Pb43.7

0.5 M 
KHCO3

-1.36 V 
vs. RHE

78.8 57.3 Carbon paper 3

Mesoporous SnO2 0.5 M 
NaHCO3

-1.0 V vs. 
RHE

87 45 Carbon cloth 4

Sn/SnOx 0.5 M 
NaHCO3

-0.7 V vs. 
RHE

58 1.8 Sn plate 5

Sn/graphene 0.1 M 
NaHCO3

-1.16 V 
vs. RHE

89 21.1 Glassy carbon 
plate

6

Polycrystalline Sn 0.1 M 
KHCO3

-1.08 V 
vs. RHE

58 5 N/A 7

[Fe4N(CO)12]- 0.1 M 
KHCO3

-1.2 V vs. 
SCE

96 3.8 Glassy carbon 8

IrHL(S)2 5:95 v/v 
H2O/MeCN

-1.65 V 
vs. SCE

93 0.6 Glassy carbon 9

[CpCo(PR
2NR’2)I]+ DMF/water -2.2 V vs. 

Fc/Fc+
90 ± 10 ~3 Glassy carbon 10
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