Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Direct Impregnation of SeS₂ into MOFs-derived 3D Nanoporous Co-

N-C Architecture Towards Superior Rechargeable Lithium Batteries

Jiarui He^{a‡}, Weiqiang Lv^{b‡}, Yuanfu Chen^a*, Jie Xiong ^a*, Kechun Wen^b, Chen Xu^a, Wanli Zhang^a, Yanrong Li^a, Wu Qin^c and Weidong He^{a,b}*

^a School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Films and Integrated Devices. ^bSchool of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China

^cNational Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy Engineering, North China Electric Power University, Beijing 102206, PR China

- * Corresponding authors, E-mail: yfchen@uestc.edu.cn; jiexiong@uestc.edu.cn, weidong.he@uestc.edu.cn
- ‡ These authors contribute equally to this work.

Figure S1. TEM images of Co-N-C.

Figure S2. Adsorption host models used to determine the active binding sites for SeS_2 (a) graphene, (b) Graphic N, (c) Pyridine N, (d) Pyrrole N, (e) Graphic Co, (f) Co(2-Methylimidazole)₄ which stand for Co-N-C MOF. The white, grey, blue, light blue balls represent H, C, N, Co atoms, respectively.

Figure S3. DFT optimized adsorption structures of SeS₂.

Figure S4. Predicted Adsorption energy of SeS_2 adsorbed on graphene, N-doped graphene, Codoped graphene and Co-N-C host, respectively.

Figure S5. SEM images of (a) SP-Co/SeS $_2$ and (b) SP/SeS $_2$.

Figure S6. The voltage profiles of (a) Co-N-C/SeS₂, (b) SP-Co/SeS₂, and (c) SP/SeS₂ at various current densities.

Figure S7. The (a) top view and (b) cross-section SEM images of Co-N-C/SeS₂.

Figure S8. EIS spectra of the SP/SeS₂, SP-Co/SeS₂ and Co-N-C/SeS₂ cathodes before cycling.

Figure S9. The digital photos of the separators disassembled from cycled coin cells of different groups.

Figure S10. SEM images of (a) fresh Li foil, cycled Li foil in the cell with the (b) Co-N-C/SeS₂, (c) SP-Co/SeS₂, and (d) SP/SeS₂.

Figure S11. Selected original Raman spectra, as corresponding to Figure 4a.

Figure S12. (a) CV curves and contour plot of Raman spectra of the $Co-N-C/SeS_2$ electrode recorded in the initial anodic scan. (b) Selected original Raman spectra, as corresponding to a.

Figure S13. DFT optimized adsorption structures of Li_2S_6 , $a-Li_2Se_2S_4$, $b-Li_2Se_2S_4$, $c-Li_2Se_2S_4$, Li_2Se_6 and Co(2-Methylimidazole)₄. Co(2-Methylimidazole)₄ is a basic chemical unit is used to represent ZIF-67. Pink denotes Li, orange denotes Se and yellow denotes S.

Figure S14. Calculated adsorption energy of (a) Li_2S_6 , (b) Li_2Se_6 , (c) $a-Li_2Se_2S_4$, (d) $b-Li_2Se_2S_4$, and (e) $c-Li_2Se_2S_4$ on Co-N-C surface. (f) Calculated adsorption energy between Co-N-C and Li_2S_6 , $Li_2Se_2S_4$ and Li_2Se_6 , respectively.

Table S1. BET surface area, pore size, and pore volume of the Co-N-C and Co-N-C/SeS2.

	pore size (nm)	pore volume (cm ³ g ⁻¹)	surface area (m ² g ⁻¹)
Co-N-C	1.9	0.72	296
Co-N-C/SeS ₂	2.7	0.09	70.7