APTES-functionalized Thin-walled Porous WO₃ Nanotubes for

Highly Selective Sensing of NO₂ in a Polluted Environment

Wei Liu, Lin Xu*, Kuang Sheng, Cong Chen, Xiangyu Zhou, Biao Dong, Xue Bai,

Shuang Zhang, Geyu Lu, Hongwei Song*

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science

and Engineering, Jilin University, Changchun, 130012, People's Republic of China

*Email address: linxu@jlu.edu.cn, songhw@jlu.edu.cn;

Fig. S1 The diameters and wall thickness distribution of (a_1) and (a_2) SiO₂/WO₃ NTs, (b_1) and (b_2) porous WO₃ NTs with 5 mol% SiO₂ removed, (c_1) and (c_2) porous WO₃ NTs with 10 mol% SiO₂ removed and (d_1) and (d_2) APTES functionalized porous WO₃ NTs based on the one with 10 mol% SiO₂ removed. The size distributions were obtained by measured the corresponding sizes from at least 100 NTs.

Fig. S2 (a) SEM image and (b) TEM image of pristine WO₃ NTs. The insert images are the enlarged SEM and TEM image of pristine WO₃ NTs.

Fig. S3 The molecular structure of APTES.

Fig. S4 The TGA of the P-WO₃ NTs (10%)@APTES and P-WO₃ NTs (10%)@APTES after long time stable.

Fig. S5 The survey of X-ray photoelectron spectra of the pristine WO₃ NTs, P-WO₃ NTs (5%), P-WO₃ NTs (10%) and P-WO₃ NTs (10%)@APTES.

Fig. S6 (a) The response of 1 ppm NO_2 concentration with different amounts of APTES, (b) the dynamic response curve of P-WO₃ NTs (10%) modified with different amounts of APTES exposed to 1 ppm NO_2 .

Fig. S7 (a) The dynamic curves and of P-WO₃ NTs (10%) sensor under different RH% (25~90%) for 1 ppm NO₂. (b) The corresponding response and recovery times of P-WO₃ NTs (10%) sensor under different RH% (25~90%) for 1 ppm NO₂.

Fig. S8 Plot of $(\alpha hv)^2$ versus hv of APTES.

Table S1. A comparison of WO_3 based NO_2 gas sensors in the literature to $P-WO_3$

Sensing material	Sensing performance	Response in this work	Temperatur e	Detection limit	Response/Recovery time	Reference
WO ₃ NRs/graphene	61/1 ppm	45	300°C	25 ppb	-	1
WO_3 nanorods	209/10 ppm	184	200°C	700 ppb	-	2
WO3 nanoparticles	48/1 ppm	45	50°C	-	-/~10 min	3
NiO/WO ₃	4.8/10 ppm	184	room temperature	-	2.5/1.1 s	4
WO ₃ –rGO porous nanocomposite	4.3/10 ppm	184	90°C	-	5.8/8.7 s	5
WO_3 thin film	20/10 ppm	184	200°C	-	3/151 s	6
WO_3 thin film	511/10 ppm	184	200°C	500 ppb	5.9/8.0 min	7
Ag-loaded mesoporous WO_3	44/1 ppm	45	75°C	100 ppb	5.05/2.46 min	8
WO3 nanowires	4.49/1 ppm	45	250°C	250 ppb	9/7 s	9
Au-functionalized WO ₃ microspheres	16/5 ppm	112	50°C	-	75/9 s	10
WO ₃ nanowires/porous silicon	6.75/5 ppm	184	100°C	-	175/44 s	11
WO₃NPs/porous silicon	3.4/2 ppm	56	150°C	50 ppb	2/20 min	12
Graphene oxide/WO ₃	7.69/5 ppm	112	room temperature	-	10/18 min	13
Porous silicon/WO ₃ nanorods	3.38/1 ppm	45	room temperature	100 ppb	92/398 s	14
WO_3 thin films	4.1/2 ppm	56	300°C	200 ppb	4.5/4.5 min	15
WO₃ nanorod bundles	111/5 ppm	112	250°C	-	230/42 s	16
Graphene oxide-Fe doped WO ₃	4.5/1 ppm	45	25°C	-	4.9/5.47 min	17
WO_3 -Ti O_2 thick film	2.5/500 ppm	-	600°C	-	-	18
WO_3 thin-film	5/1 ppm	45	370°C	100 ppb	-	19
P-WO₃ NTs (10%)@APTES	45/1 ppm	45	340°C	10 ppb	10/11 s	This work

NTs (10%)@APTES sensor in this work.

Table S2. A comparison of some typical semiconductor oxide based NO₂ gas sensors with that of P-WO₃ NTs (10%)@APTES sensor in this work.

Sensing material	Sensing performance	Response in this work	Temperature	Detection limit	Response/Recovery time	Reference
rGO-Cu₂O	1.68/2 ppm	56	room temperature	64	-	20
Co₃O₄-SnO₂ nanowires	3.47/10 ppm	184	350°C	2 ppm	>100/100 s	21
ZnO-rGO	1.25/5 ppm	112	room temperature	-	165/499 s	22
SnS ₂ materials	14.9/10 ppm	184	250°C	500 ppb	6/40 s	23
ZnO microspheres	4/1 ppm	45	400°C	500 ppb	-	24
In ₂ O ₃ microspheres	1.5/5 ppm	112	250°C	5 ppm	5/20 s	25
Ag-SnO2 microrods	24/50 ppm	541	300°C	100 ppb	-	26
CuO/p-porous silicon	7.8/1 ppm	45	300°C	125 ppb	257/374 s	27
NiO nanosheets	1.5/10 ppm	184	250°C	1 ppm	-	28
Cr-doped TiO ₂ -NT	2.9/50 ppm	541	500°C	-	3/6 min	29
P-WO₃ NTs (10%)@APTES	45/1 ppm	45	340°C	10 ppb	10/11 s	This work

Table S3. The anti-interference test of P-WO₃ NTs (10%)@APTES sensor to 10 ppm

interferi	ng gases in the existence of 1 ppm NO_2 .

Gas species	Response of P-WO ₃ NTs (10%)@APTES sensor			
1 ppm NO ₂	45.5			
1 ppm NO ₂ + 10 ppm NH ₃	44.5			
1 ppm NO ₂ + 10 ppm H ₂ S	43.7			
1 ppm NO ₂ + 10 ppm ethanol	45.3			
1 ppm NO ₂ + 10 ppm toluene	44.9			
1 ppm NO ₂ + 10 ppm methanol	45.2			
1 ppm NO ₂ + 10 ppm acetone	44.2			
1 ppm NO ₂ + 10 ppm CO	43.4			
1 ppm NO ₂ + 10 ppm O ₃	44.8			
1 ppm NO ₂ + 10 ppm NO	43.9			
1 ppm NO ₂ + 10 ppm SO ₂	45.1			

Air pollution species	Satisfied	Light pollution	Moderate pollution	Heavy pollution
SO ₂ (ppb)	9	11	17	19
PM 10 (ppb)	75	89	92	152
CO (ppb)	15	17	18	22
O ₃ (ppb)	5	10	13	41

Table S4. The pollution data came from the real-time air quality information of

Changchun environmental protection bureau.

References

- 1. X. An, J. C. Yu, Y. Wang, Y. Hu, X. Yu and G. Zhang, J. Mater. Chem., 2012, 22, 8525-8531.
- 2. S. Bai, K. Zhang, R. Luo, D. Li, A. Chen and C. C. Liu, J. Mater. Chem., 2012, 22, 12643-12650.
- 3. D. Meng, T. Yamazaki, Y. Shen, Z. Liu and T. Kikuta, Appl. Surf. Sci., 2009, 256, 1050-1053.
- 4. M. Bao, Y. Chen, F. Li, J. Ma, T. Lv, Y. Tang, L. Chen, Z. Xu and T. Wang, Nanoscale, 2014, 6, 4063.
- 5. Q. Hao, T. Liu, J. Liu, Q. Liu, X. Jing, H. Zhang, G. Huang and J. Wang, RSC Adv., 2017, 7, 14192-14199.
- 6. V. V. Ganbavle, S. V. Mohite, G. L. Agawane, J. H. Kim and K. Y. Rajpure, J. Alloys Compd., 2015, 451, 245-254.
- 7. N. Isaac, M. Valenti, A. Schmidtott and G. Biskos, ACS Appl. Mater. Interfaces, 2016, 8, 3933-3939.
- 8. Y. Wang, X. Cui, Q. Yang, J. Liu, Y. Gao, P. Sun and G. Lu, Sens. Actuators, B, 2016, 225, 544-552.
- 9. N. V. Hieu, H. V. Vuong, N. V. Duy and N. D. Hoa, Sens. Actuators, B, 2012, 171, 760-768.
- 10. Y. Shen, H. Bi, T. Li, X. Zhong, X. Chen, A. Fan and D. Wei, *Appl. Surf. Sci.*, 2018, **434**, 922-931.
- 11. S. Ma, M. Hu, P. Zeng, M. Li, W. Yan and Y. Qin, Sens. Actuators, B, 2014, 192, 341-349.
- 12. W. Yan, M. Hu, P. Zeng, S. Ma and M. Li, Appl. Surf. Sci., 2014, 292, 551-555.
- 13. P. G. Su and S. L. Peng, Talanta, 2015, 132, 398.
- 14. Y. Wei, M. Hu, W. Yan, D. Wang, Y. Lin and Y. Qin, Appl. Surf. Sci., 2015, 353, 79-86.
- 15. A. Maity and S. B. Majumder, Sens. Actuators, B, 2015, 206, 423-429.
- 16. P. V. Tong, N. D. Hoa, V. V. Quang, N. V. Duy and N. V. Hieu, Sens. Actuators, B, 2013, 183, 372-380.
- 17. C. Piloto, M. Shafiei, H. Khan, B. Gupta, T. Tesfamichael and N. Motta, Appl. Surf. Sci., 2017, **434**, 126-133.
- 18. S. E. Jo, B. G. Kang, S. Heo, S. Song and Y. J. Kim, Curr. Appl. Phys., 2009, 9, e235-e238.
- 19. M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J. J. Pireaux and X. Correig, Sens. Actuators, B, 2005, 105, 271-277.
- 20. S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei and C. H.

Sow, J. Am. Chem. Soc., 2012, 134, 4905-4917.

- 21. Y. J. Kwon, H. G. Na, S. Y. Kang, M. S. Choi, J. H. Bang, T. W. Kim, A. Mirzaei and H. W. Kim, *Sens. Actuators, B*, 2017, **239**, 180-192.
- 22. S. Liu, B. Yu, H. Zhang, T. Fei and T. Zhang, Sens. Actuators, B, 2014, **202**, 272-278.
- 23. Y.-H. Kim, D.-T. Phan, S. Ahn, K.-H. Nam, C.-M. Park and K.-J. Jeon, *Sens. Actuators, B*, 2018, **255**, 616-621.
- 24. D. Veeran Ponnuvelu, S. Abdulla and B. Pullithadathil, *Microporous Mesoporous Mater.*, 2018, **255**, 156-165.
- 25. Z. Cheng, L. Song, X. Ren, Q. Zheng and J. Xu, Sens. Actuators, B, 2013, 176, 258-263.
- 26. S. W. Choi, A. Katoch, G. J. Sun, P. Wu and S. Kim, J. Mater. Chem. C, 2013, 1, 2834-2841.
- 27. X. Liu, M. Hu, Y. Wang, J. Liu and Y. Qin, J. Alloys Compd., 2016, 685, 364-369.
- 28. N. D. Hoa and S. A. El Safty, *Chem. Eur. J.*, 2011, **17**, 12896-12901.
- 29. Y. Gönüllü, A. A. Haidry and B. Saruhan, *Sens. Actuators, B*, 2015, **217**, 78-87.