Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting information

Tubular Cu(OH)₂ Arrays Decorated by Nanothorny Co-Ni Bimetallic

Carbonate Hydroxide Supported on Cu Foam: a 3D Hierarchical

Core-shell Efficient Electrocatalyst for Oxygen Evolution Reaction

Jiahui Kang ^{a, b}, Jiali Sheng ^a, Jinqi Xie ^a, Huangqing Ye ^a, Jiahui Chen ^a, Xian-Zhu Fu ^{*a,c}, Guoping Du^{*b}, Rong Sun ^{*a}, Ching-Ping Wong ^{d,e}

^a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

^b School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China.

^c College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

^dDepartment of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong, China

 ^e School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States

* Corresponding authors:

Xian-Zhu Fu, E-mail address: xz.fu@szu.edu.cn;

Guoping Du, E-mail address: guopingdu@ncu.edu.cn

Rong Sun, E-mail address: rong.sun@siat.ac.cn

Tel: +86-755-86392151; Fax: +86-755-86392299

Figure S1 TEM images of Cu(OH)₂ NTs.

Figure S2 Low-magnification SEM of Cu(OH)₂@CoNiCH NTs/CF.

Figure S3 Low and high magnification TEM images of Cu(OH)₂@CoNiCH NTs.

Figure S4 Low-magnification SEM of Cu(OH)₂ NWs/CF.

Figure S5 Low-magnification SEM of Cu(OH)₂@CoNiCH NWs/CF.

Figure S6 Low-magnification TEM of Cu(OH)₂@CoNiCH NWs.

Figure S7 STEM EDS element mapping of Cu(OH)₂@CoNiCH NWs: (a)HAADF image of the EDS mapping area, (b-g) element mapping of Cu, O, Co, Ni and C elements.

For comparison, Cu and O elements evenly distributing on the whole individual construction proves that the solid $Cu(OH)_2$ nanowire core, and strong signals of Co and Ni in the walls mainly shows that CoNi nanothorn shell were distributed on the surface. (Figure S7)

Figure S8 SEM of the CoNiCH NRs/CF.

Figure S9 TEM of Cu(OH)₂@CoCH NTs.

Figure S10 EDS content of Cu(OH)₂@CoNiCH NTs.

As shown in Figure S10, the atomic ratio of Co/Ni of Cu(OH)₂@CoNiCH NTs is approximately 1.93 according to the EDS result.

Figure S11 EDS content of Cu(OH)₂@CoNiCH NWs.

Figure S12 EDS content of CoNiCH NRs.

Samples	Co/Ni molar ratios			
-	ICP	EDS	XPS	
Cu(OH)2@CoNiCH NTs	1.90	1.93	1.91	
Cu(OH)2@CoNiCH NWs	1.91	1.98	1.92	
CoNiCH NRs	1.89	1.82	1.91	

Table S1 The molar ratios of Co/Ni in prepared samples determined by ICP, EDS, XPS

Figure S13 XRD of Cu(OH)₂@CoNiCH NTs/CF, Cu(OH)₂@CoCH NTs/CF, Cu(OH)₂@NiCH NTs/CF and Cu(OH)₂ NTs/CF.

Figure S14 (a-b) BET of Cu(OH)₂@CoNiCH NTs and Cu(OH)₂ NTs, (c-d) BET of bare Cu foam.

Figure S15 Cu LMM of Cu(OH)2@CoNiCH NTs/CF and bare CF.

Figure S16 XPS spectra (Cu 2p and O 1s) comparison of the Cu(OH)₂@CoNiCH NTs/CF and Cu(OH)₂ NTs/CF.

Figure S17 (a) XPS spectra (Co 2p) comparison of the Cu(OH)₂@CoNiCH NTs/CF and Cu(OH)₂@CoCH NTs/CF, (b) XPS spectra (Ni 2p) comparison of Cu(OH)₂@CoNiCH NTs/CF and Cu(OH)₂@NiCH NTs/CF

Figure S18 a) Polarization curves and b) Tafel plots of flat Cu(OH)₂@CoNiCH NTs /Cu foil and rough Cu(OH)₂@CoNiCH NTs/CF.

Figure S19 Mass-normalized polarization curves of the active materials loaded on CF.

Active materials	Mass (mg)	η (mV) (j = 30 mA mg ⁻¹)	η (mV) (j = 100 mA mg ⁻¹)
Cu(OH)2@CoNiCH NTs/CF	1.54	303	340
Cu(OH)2@CoNiCH NWs/CF	1.82	319	401
Cu(OH)2@CoCH NTs/CF	1.63	321	388
Cu(OH)2@NiCH NTs/CF	1.52	386	477
CoNiCH NRs/CF	0.96	349	404
Cu(OH) ₂ NTs/CF	0.64	439	524

Table S2 Mass-normalized overpotential of the active materials loaded on CF

		Overpotential at current			
Catalyst		density			D.C
	Mass (mg)	10 mA	50 mA	100 mA	Ref.
		cm ⁻²	cm ⁻²	cm ⁻²	
Cu(OH) ₂ @CoNiCH NTs/CF	1.54 mg cm ⁻²	85	305	326	This work
Co ₁ Mn ₁ carbonate hydroxide nanosheets/NF	5.6 mg cm ⁻²	-	322	349	J. Am. Chem. Soc. 2017, 139 (24), 8320-8328
CCS CoNi core-shell nanowires/carbon fiber	0.3 mg cm ⁻²	302	-	-	Adv. Energy Mater. 2017, 7 (1), 1601492
CoO–MoO ₂ Nanocages	0.5 mg cm ⁻²	312	-	-	Adv. Funct. Mater. 2017, 27 (34), 1702324
FeCoOOH/Graphene	0.2 mg cm ⁻²	330	-	-	Adv. Energy Mater. 2017, 7 (14), 1602148
NiFe LDH nanosheets/Cu nanowire	-	310	-	460	Energy Environ. Sci. , 2017, 10, 1820- 1827.
Dendritic Nanostructured Copper Oxide	-	290	-	-	Angew. Chem. Int. Ed. 2017, 129 (17), 4870- 4874
NiFe LDH/NF	-	240	~350	~460	Science 2014, 345, 1593
Ni(OH) ₂ -TCNQ microarray	5.6 mg cm ⁻²		322	354	ACS Catal., 2018, 8, 651- 655
CoO/Co composite	0.255 mg cm ⁻²	350	-	-	ACS Energy Lett. 2017, 2 (5), 1208–1213

Table S3 Comparison of the 3D Cu(OH)2@CoNiCH NTs/CF with recently reported materials

Figure S20 The XPS spectra comparison of Cu(OH)₂@CoNiCH NTs/CF before and after LSV tests.

Figure S21 ECSAs and corresponding C_{dl} of the (a) $Cu(OH)_2$ @CoNiCH NTs/CF, (b) $Cu(OH)_2$ @CoNiCH NWs/CF, $Cu(OH)_2$ NTs/CF, (d) CoNiCH NRs/CF.

Figure S22 ECSA and corresponding C_{dl} of $Cu(OH)_2@CoCH NTs/CF$, $Cu(OH)_2@NiCH NTs/CF$

Figure S23 Contact angle images of (a) $Cu(OH)_2@CoNiCH NTs/CF$ (b) $Cu(OH)_2 NTs/CF$ and (c) Cu foam