Supporting Information

Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication

Youhei Numata,^{1†}* Ryo Ishikawa,² Yoshitaka Sanehira,¹ Atsushi Kogo,^{1‡} Hajime Shirai,² and Tsutomu Miyasaka¹*

¹Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa, 225-8503 Japan.

²Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, 338-8570 Japan.

*Dr. Youhei Numata (E-mail: y_numata@dsc.rcast.u-tokyo.ac.jp). *Prof. Tsutomu Miyasaka (E-mail: miyasaka@toin.ac.jp).

[†]Present affiliation, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo

[‡]Present affiliation, National Institute of Advanced Industrial Science and Technology (AIST)

Figure S1. Surface SEM images of TiO_x CLs dried at 100 °C (left) and sintered at 500 °C (right), respectively. Scale bar = 1 μ m.

Figure S2. XPS spectra of TiO_X and (5%) Nb/TiO_X CL annealed at 150 °C.

Figure S3. *I-V* curves of FTO/CL (TiO_X and (5%) Nb/TiO_X)/Au device; CL thickness is approximately 40 nm, and schematic illustration of the measured device.

Figure S4. Transmittances of TiO_x and (5%) Nb/TiO_x CL on FTO substrates dried at 100, 130, and 150 °C with the thickness of 50, 100, and 150 nm, respectively.

Figure S5. Hall-effect measurement data of (5%) Nb/TiO_X CL (film thickness: 7 nm) on a 1.25×1.25 cm² glass substrate measured under (a) +0.5 T and (b) -0.5 T magnetic field, respectively. Electrodes contacted at diagonal corners (1-3 and 2-4).

Figure S6. Cross-sectional SEM images of $(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$ PSCs based on (5%) Nb/TiO_x CLs with different thickness; 40, 70, and 100 nm. Black scale bar: 500 nm.

Figure S7. *J-V* curves of PSCs of $(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$ based on (5%) Nb/TiO_x CLs with different thickness; 40 (red), 70 (green), and 100 nm (blue). Broken line: forward scans and line: reverse scans.

Table S1. Photovoltaic parameters in reverse scans ($V_{OC} \rightarrow J_{SC}$) of PSCs based on (5%) Nb/TiO_x CL with different thickness

CL thickness	scan	$J_{\rm SC}$ (mA	$V_{\rm OC}$ (V)	FF	η (%)	No. of cells	
(nm)	direction	cm ⁻²)					
40	forward	22.71±0.28	1.14 ± 0.01	0.50±0.04	13.0±0.9		
		(22.78)	(1.14)	(0.54)	(14.1)	6	
	reverse	20.56±1.06	1.16±0.01	0.69±0.02	16.5±0.6		
		(21.26)	(1.16)	(0.70)	(17.3)		
70	forward	18.25±1.57	1.13±0.01	0.41±0.04	8.5±1.4		
		(20.46)	(1.14)	(0.45)	(10.4)	6	
	reverse	17.10±2.53	1.15 ± 0.01	0.73±0.07	14.2±1.3	0	
		(20.00)	(1.16)	(0.68)	(15.7)		
100	forward	5.29±0.13	1.13±0.03	0.62±0.15	3.7±1.1		
		(5.38)	(1.15)	(0.73)	(4.5)	7 a)	
	reverse	9.93±1.68	1.13±0.02	0.60±0.02	6.8±1.6	Δ-,	
		(11.12)	(1.13)	(0.62)	(7.9)		

Scan direction: forward $J_{SC} \rightarrow V_{OC}$ and reverse: $V_{OC} \rightarrow J_{SC}$. In parentheses, the parameters of the best cell. Cell active area is $5 \times 5 \text{ mm}^2$ defined by black mask. ^{a)} Because of high resistance, few cells cannot be estimated their conversion efficiencies, e.g., FF > 1.

Compact	scan	$J_{ m SC}~(m mA~cm^{-2})$	$V_{\rm OC}$ (V)	FF	η (%)	No. of
layer	direction ^{a)}					cells
TiOx	forward	21.48±0.94	1.10±0.02	0.54±0.15	12.7±3.4	
		(21.63)	(1.13)	(0.67)	(16.4)	20
	reverse	20.30±0.49	1.13±0.02	0.74±0.05	17.3±1.4	20
		(20.51)	(1.16)	(0.79)	(19.1)	
Nb 1%	forward	22.20±0.74	1.08±0.01	0.56±0.04	13.5±1.2	
		(23.11)	(1.08)	(0.63)	(15.6)	14
	reverse	21.79±0.23	1.12±0.01	0.74±0.02	17.9±0.8	14
		(22.30)	(1.13)	(0.76)	(19.2)	
Nb 2%	forward	22.06±0.60	1.05±0.02	0.53±0.07	12.3±1.8	
		(22.28)	(1.04)	(0.63)	(14.6)	16
	reverse	21.68±0.69	1.10±0.02	0.68±0.07	16.3±2.1	10
		(22.31)	(1.13)	(0.74)	(18.4)	
Nb 3%	forward	21.68±0.52	1.07±0.02	0.60±0.04	13.9±1.1	
		(21.66)	(1.09)	(0.64)	(15.0)	10
	reverse	21.27±0.61	1.11±0.02	0.73±0.04	17.2±1.2	10
		(21.90)	(1.12)	(0.75)	(18.4)	
Nb 4%	forward	22.08±0.56	1.09±0.02	0.59±0.07	14.2±2.0	
		(22.26)	(1.12)	(0.68)	(17.0)	15
	reverse	21.75±0.64	1.13±0.01	0.73±0.04	17.9±1.2	15
		(22.36)	(1.14)	(0.77)	(19.6)	
Nb 5%	forward	21.29±0.89	1.08±0.01	0.49±0.07	11.5±1.9	
		(22.33)	(1.09)	(0.57)	(13.9)	14
	reverse	20.64±0.97	1.12±0.01	0.73±0.04	16.8±1.3	14
		(20.71)	(1.13)	(0.77)	(18.1)	

Table S2. Photovoltaic parameters of $(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$ PSCs based on Nb/TiO_x CLs with different Nb doping ratio dried at 150 °C

Scan direction: forward $J_{SC} \rightarrow V_{OC}$ and reverse: $V_{OC} \rightarrow J_{SC}$. In parentheses, the parameters of the best cell. Cell active area is $5 \times 5 \text{ mm}^2$ defined by black mask.

Figure S8. Nb-doping ratio dependency of photovoltaic parameters of $(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$ PSCs based on Nb/TiO_x CLs dried at 150 °C.

Anneal temp.	No. of cells	$J_{\rm SC}~({ m mA~cm^{-2}})$	$V_{\rm OC}$ (V)	FF	η(%)
100°C	6 cells	19.56±0.22	0.93±0.02	0.44±0.02	8.1±0.5
	best eff.	19.70	0.95	0.48	9.0
110°C	6 cells	19.43±0.29	0.98±0.02	0.52±0.04	10.0±1.0
	best eff.	19.12	1.00	0.59	11.3
120°C	6 cells	21.25±0.27	0.97±0.04	0.52±0.03	10.8±1.0
	best eff.	21.52	1.01	0.55	11.9
130°C	12 cells	21.43±0.66	1.00±0.04	0.58±0.04	12.6±1.4
	best eff.	22.21	1.03	0.64	14.6
14090	6 cells	20.33±0.76	1.01±0.03	0.61±0.04	12.6±1.3
140 C	best eff.	20.01	1.04	0.64	14.0
15000	6 cells	19.53±0.27	1.03±0.02	0.61±0.07	12.3±1.6
150 C	best eff.	19.81	1.04	0.66	13.5
160°C	6 cells	17.96±1.12	0.97±0.05	0.53±0.10	9.2±2.0
	best eff.	19.59	1.03	0.62	12.4
170°C	6 cells	17.44±0.47	0.99±0.02	0.57±0.03	10.0±0.8
1/0°C	best eff.	18.08	1.01	0.60	10.9

Table S3. Photovoltaic parameters in reverse scans ($V_{OC} \rightarrow J_{SC}$) of PSCs based on FA_{0.85}Cs_{0.15}PbI₃ perovskite annealed at different temperatures.

The PSCs are prepared on a substrate: FTO/high-temperature sintered TiO₂ CL/low-temperature dried brookite mesoporous layer. Scan direction: forward $J_{SC} \rightarrow V_{OC}$ and reverse: $V_{OC} \rightarrow J_{SC}$. In parentheses, the parameters of the best cell. Cell active area is $5 \times 5 \text{ mm}^2$ defined by black mask.

Figure S9. *J-V* curves of FA_{0.85}Cs_{0.15}PbI₃ based PSCs annealed at different temperatures. Forward (broken line) and reverse (solid line) scans.

Figure S10. XRD chart of FA_{0.85}Cs_{0.15}PbI₃ perovskite film on mesoporous substrate prepared by different anneal temperatures.

Figure S11. Cross-sectional SEM image of $FA_{0.85}Cs_{0.15}PbI_3$ PSC based on (4%) Nb/TiOx CL. For pinholes in the HTL, it is expected that they are formed by thermal stress during gold evaopration.¹

Reference

1 A. K. Jena, M. Ikegami, and T. Miyasaka, ACS Energy Lett., 2017, 2, 1760-1761.