Supporting Information

Cost Effective Mo Rich Mo₂C Electrocatalysts for Hydrogen Evolution Reaction

Jie Dong¹, Qiang Wu¹, Cunping Huang², Weifeng Yao^{1, 3*}, Qunjie Xu^{1, 3*}

¹Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai, P. R. China. ²Aviation Fuels Research Laboratory, Federal Aviation Administration William J. Hughes Technical Center, U.S.A. ³Shanghai Institute of Pollution Control and Ecological Security, Shanghai, P. R. China.

*Corresponding author: <u>vaoweifeng@shiep.edu.cn</u> and <u>xuqunjie@shiep.edu.cn</u>

Fig. S1. (a) SEM image and (b) EDS of $Mo_3O_{10}(C_6H_8N)_2 \cdot 2H_2O$.

Fig. S2. XRD patterns of Mo₃O₁₀(C₆H₈N)₂·2H₂O and prepared Mo-Mo₂C-n precursor samples with ammonium heptamolybdate to aniline molar ratio of 1:12, 1:18 and 1:24.

Fig. S3. XRD patterns of molybdenum carbides synthesized at 675, 775 and 875 °C.

Fig. S4. TGA curve of the prepared $Mo_3O_{10}(C_6H_8N)_2 \cdot 2H_2O$ at heating rate of 5 °C min⁻¹ under nitrogen gas from room temperature to 800 °C.

Fig. S5. EDS spectra of Mo-Mo₂C-0.077

Fig. S6. (a) XPS Mo 3d spectra of Mo₂C; (b) Mo-Mo₂C-0.055 and; (c)Mo-Mo₂C-0.082 catalyst samples.

Fig. S7. Cyclic voltammograms of (a)Mo₂C; (b)Mo-Mo₂C-0.055; (c) Mo-Mo₂C-0.077 and; (d) Mo-Mo₂C-0.082 with scanning rates from 20 to 200 mV s⁻¹ and the potential range from 0.30 - 0.40 V vs RHE in a 0.5 M H₂SO₄ solution.

Fig. S8. Estimated the double-layer capacitances (C_{dl}) by plotting the current density variation against scan rate to fit a linear regression. $\Delta j = (j_a - j_c)/2$ was obtained at 350 mV vs. RHE the CV in Fig. S5 in the Supporting Information.

Fig. S9. Nyquist plots from a 0.5 M H_2SO_4 solution on the modified GCEs comprised of (I) Mo-Mo₂C-0.082, (II) Mo₂C, (III) Mo-Mo₂C-0.055, (IV) Mo-Mo₂C-0.077, and (V) commercial Pt/C electrocatalysts at 180 mV in 0.5M H_2SO_4 . The inset is an equivalent circuit model for electrochemical impedance tests. R_s , R_1 and R_{ct} represent the resistances of the electrolyte, electrode porosity and charge-transfer, respectively. The constant phase angle element (CPE) represents the double layer capacitance of a solid electrode in the real-world situation.

Electrocatalyst	AH/An*	Temperature	Heating rate	Ar flow rate	
		(°C)	(°C/min)	(ml/min)	
Mo ₂ C**	1:18	675	2	125	
Mo-Mo ₂ C-0.055***	1:12	775	2	125	
Mo-Mo ₂ C-0.077	1:18	775	2	125	
Mo-Mo ₂ C-0.082	1:24	775	2	125	

Table S1. Controlled Mo-Mo₂C-n synthesis conditions

*Ammonium Heptamolybdate tetrahydrate/Aniline molar ratio for the synthesis of Mo-Mo₂C-n. **Although at the same AH/An molar ratio of 1:18, only Mo₂C is formed due to the sample annealing temperature (675 °C).

****This number presents the Mo content.

Table S2 Summary of the Elemental contents of Mo-Mo₂C-n catalysts

Floatroastalyst	C content	O content	Mo content
Liecuocataryst	(wt.%) ^a	(wt.%) ^a	(wt.%) ^b
Mo-Mo ₂ C-0.055	5.8	-	94.2
Mo-Mo ₂ C-0.077	8.6	-	91.4
Mo-Mo ₂ C-0.082	22.8	2.9	74.3

^a Data are determined by CHNS/O elemental analysis;

^b Data are calculated according to the results of a.

Table S3 Summary of component content of Mo-Mo₂C-n

	Mo ₂ C content	Mo metallic content		
Electrocataryst	$(wt.\%)^*$	$(wt.\%)^*$		
Mo-Mo ₂ C-0.055	94.5	5.5		
Mo-Mo ₂ C-0.077	92.3	7.7		
Mo-Mo ₂ C-0.082	91.8	8.2		

* Data are obtained using Jade 6.0 software.

Electrocatalyst	Loading	η_{Onset}	$\eta_{10}{}^{[a]}$	Tafel slope	j 0 ^[b]	Counter	Ref.
	(mg cm ⁻²)	(mV)	(mV)	(mV dec ⁻¹)	(mA cm ⁻²)	electrode	
Mo-Mo ₂ C-0.077	0.28	67	150	55	0.019	Graphite rod	This
	0.50						work
Mo ₂ C/G	-	87	236	76	-	Pt foil	1
Mo ₂ C	0.102	-	198	56	-	Graphite rod	2
Mo ₂ C/MoP@NPC	-	-	160	75	-	Carbon rod	3
$MoO_2/\alpha-Mo_2C$	0.68	-	152	65	-	Pt foil	4
MoO ₂ /MoC@C	0.57	-	$133(\eta_{20}^{[c]})$	77.3	0.371	Graphite rod	5
Mo ₂ C/CLCN	0.357	85	145	48.2	0.062	Carbon rod	6
Mo ₂ C@NPC-4	0.265	~44	144	52.5	-	Pt wire	7
MoC/C	0.57		144(₁₂₀)	63.6	0.104		0
MoC@C	0.57	-	157(ŋ ₂₀)	93.3	0.390	Graphite rod	8
Mo ₂ C-QDs/NG	0.28	-	146	60	0.05	Carbon rod	9
c-α-MoC _{1-X} @BCN		20	124	47	0.124		
h-β-Mo ₂ C@BCN		20	140	103	0.392		
o-β-Mo ₂ C@BCN	0.7-0.8	48	168	80	0.109	Graphite rod	10
o-α-Mo ₂ C@BCN		40	195	73	0.011		
h-η-MoC@BCN		45	182	67	0.006		
BCF/Mo ₂ C	10.7	-	115(η ₂₀)	84.8	-	Graphite rod	11
MoC@NC	0.205	0.295	24 150	54	0.007	Graphite rod	12
nanoribbon	0.385	24	~150				
Mo ₂ C nanoribbon/			57			12	
N-G film	-	84	4 162	57	-	Carbon rod	15
McCat aatalyst	0.4	44	96	27	0.018	Carbon	14
WOCat Catalyst	0.4			57		electrode	14
MoO ₂ /C			246	107.1	0.05		
MoC/C	0.84	-	179	91.1	0.13	Carbon rod	15
Mo ₂ C/C			135	75.1	0.36		
3DHP-Mo ₂ C	-	75	166	75	0.287	Graphite rod	16
NiMo ₂ C@C	0.15	65	169	100	0.22	Graphite rod	17
50R@MS	0.362	20	112	65	0.44	Graphite rod	18
Mo ₂ C-RGO	0.285	70	130	57.3	-	Pt mesh	19
MoC _X	0.8	25	140	52	0.022	Creatite rel	20
nano-octahedrons		23	142		0.025	Graphine rod	20

Table S4 Comparison of the HER activities of $Mo-Mo_2C-0.077$ with reported Mo_xC electrocatalysts in a 0.5 M H₂SO₄ electrolyte.

[a] η_{10} : Overpotential required for an electrode to produce a current density of 10 mA cm⁻².

[b] j_0 : Exchange current density (mA cm⁻²).

[c] η_{20} : Overpotential required to produce a current density of 20 mA cm⁻².

References for supplementary information:

- D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu, J. Chen, W. Liu, W. Zhou and K. P. Loh, *Adv. Mater.*, 2017, 29.
- 2. L. Ma, L. R. L. Ting, V. Molinari, C. Giordano and B. S. Yeo, J. Mater. Chem. A, 2015, 3, 8361-8368.
- J. Q. Chi, W. K. Gao, J. H. Lin, B. Dong, K. L. Yan, J. F. Qin, Z. Z. Liu, Y. M. Chai and C. G. Liu, J. Colloid Interf. Sci., 2017, 513, 151-160.
- 4. Y. Liu, B. Huang and Z. Xie, Appl. Surf. Sci., 2018, 427, 693-701.
- 5. C. C. Lv, Z. P. Huang, Q. P. Yang and C. Zhang, Inorg. Chem. Front., 2018, 5, 446-453.
- J. Jia, W. Zhou, Z. Wei, T. Xiong, G. Li, L. Zhao, X. Zhang, H. Liu, J. Zhou and S. Chen, Nano Energy, 2017, 41, 749-757.
- 7. L. Ji, J. Wang, L. Guo and Z. Chen, J. Mater. Chem. A, 2017, 5, 5178-5186.
- Z. H. Cuncai Lv, Qianpeng Yang, Guangfeng Wei, Zuofeng Chen, Mark G and a. C. Z. Humphrey, J. Mater. Chem. A, 2017, 5, 22805-22812.
- 9. B. L. Lili Huo, Zhiqing Gao, and Jun Zhang., J. Mater. Chem. A, 2017, 5, 18494-18501.
- 10. M. H. L. a. J. S. L. Mohsin Ali Raza Anjum, J. Mater. Chem. A, 2017, 5, 13122-13129
- J. Xiao, Y. Zhang, Z. Zhang, Q. Lv, F. Jing, K. Chi and S. Wang, ACS Appl. Mater. Inter., 2017, 9, 22604-22611.
- Z. Cheng, J. Gao, Q. Fu, C. Li, X. Wang, Y. Xiao, Y. Zhao, Z. Zhang and L. Qu, ACS Appl. Mater. Inter., 2017, 9, 24608-24615.
- 13. J. Gao, Z. Cheng, C. Shao, Y. Zhao, Z. Zhang and L. Qu, J. Mater. Chem. A, 2017, 5, 12027-12033.
- R. R. Rajinder Kumar, Seema Goutam, Abir De Sarkar, Nidhi Tiwari, Shambhu Nath Jha, and
 A. K. G. a. V. B. Dibyendu Bhattacharyya, *J. Mater. Chem. A*, 2017, 5, 7764-7768
- J. W. Junpo Guo, Zexing Wu, Wen Lei, Jing Zhu, Kedong Xia and Deli Wang., J. Mater. Chem. A, 2017, 5, 4879-4885.
- 16. T. Meng, L. Zheng, J. Qin, D. Zhao and M. Cao, J. Mater. Chem. A, 2017, 5, 20228-20238.
- a. L. Y. Xiao Li, Tan Su, Xinlong Wang, a Chunyi Sun, and Zhongmin Su., J. Mater. Chem. A, 2017, 5, 5000-5006.
- Y. Zhu, G. Chen, Y. Zhong, W. Zhou, M. Liu and Z. Shao, *Materials Today Energy*, 2017, 6, 230-237.
- L. F. Pan, Y. H. Li, S. Yang, P. F. Liu, M. Q. Yu and H. G. Yang, *Chem. Commun.*, 2014, 50, 13135-13137.
- 20. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu and X. W. Lou, *Nat. commun.*, 2015, 6, 6512.