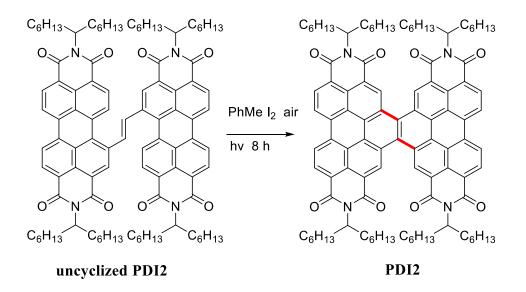
Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer

Liyan Yang^{a,b#}, Mingliang Wu^{b,c#}, Feilong Cai^{a,b}, Pang Wang^{a,b}, Robert S. Gurney^{a,b}, Dan Liu^{a,b}, Jianlong Xia^{c*}, Tao Wang^{a,b}*

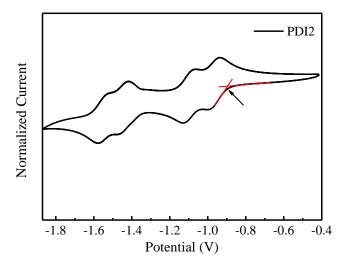
^a State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology,

Wuhan, 430070, China

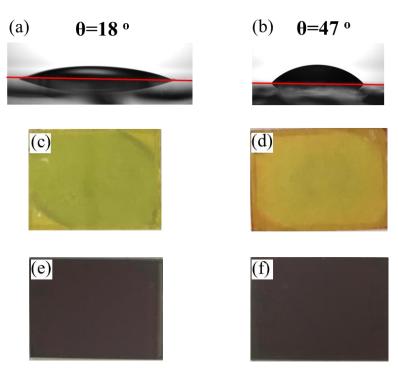
^b School of Materials Science and Engineering, Wuhan University of Technology, Wuhan,


430070, China

^c School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology,


Wuhan, 430070, China

[#]These authors contribute equally to this work.


* E-mail: twang@whut.edu.cn; jlxia@whut.edu.cn

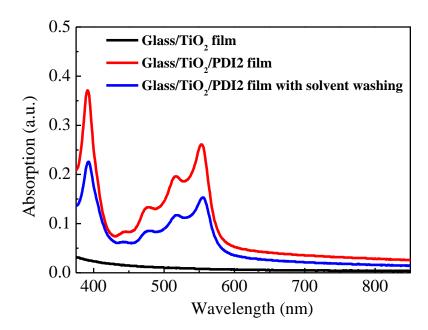

Fig. S1. The uncyclized PDI2 (500 mg, 0.326 mmol), which was synthesized by referring to previous literature procedure,^{1,2} was dissolved in 300 mL toluene in a 500ml round bottom flask, and iodine (100 mg) was added. The reacting mixture solution was drawn into a home-built flow reactor (equipped with four 450 W-mercury lamps). The purple reaction mixture was turned to orange red after pumped through the flow reactor twice with a retention time of ~8 hours. The solvent was removed using vacuum rotary evaporator and the crude residue was washed with methanol to remove excessive iodine. The crude red solid was purified with silica gel (eluent: petroleum ether/dichloromethane) and recrystallization from hexane, then the final product PDI2 was obtained as a red solid (440 mg, 88%).

Fig. S2 Cyclic voltammograms (CVs) of PDI2 (versus Fc/Fc+). The LUMO levels were calculated by the following equations: $E_{LUMO} = -(E_{red} - E_{Fc} + 4.8)$ eV, where E_{red} results were obtained from the onset of reduction, respectively, while E_{Fc} was the half-wave potential of ferrocene. The optical bandgap was estimated from the onset positions of the absorption spectra and calculated by the equation: $E_g = 1240/\lambda_{onset}$. Where the λ_{onset} is 576 nm. So the calculated E_g is 2.15 eV. It was measured that the E_{red} - $E_{Fc} = -0.89$ eV. So the $E_{LUMO} = -(E_{red} - E_{Fc} + 4.8)$ eV = -3.91 eV, $E_{HOMO} = -6.06$ eV.

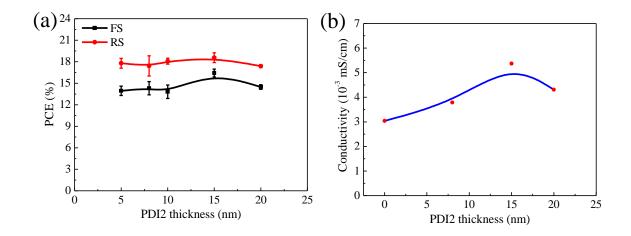

Fig. S3 The contact angle of mixed solvent of DMF and DMSO (9:1) on (a) TiO_2 and (b) $TiO_2/PDI2$ surfaces. The PbI₂ films cast on (c) TiO_2 and (d) $TiO_2/PDI2$ surfaces, and perovskite films on (e) TiO_2 and (f) $TiO_2/PDI2$ surfaces.

Fig. S4 The absorption of TiO_2 film on glass, and PDI2 film coated on glass/ TiO_2 before and after washing with mixed solvents of DMF and DMSO (9:1)

ETLs	Light soaking	Scan direction	PCE	Jsc (mA/cm ²)	Voc	FF
	time (s)		(%)		(V)	(%)
TiO ₂	0	Forward scan	10.38	23.27	0.93	48.15
	20		12.80	23.22	0.98	56.33
	40		12.87	23.17	0.99	55.90
	0	Reverse scan	16.40	23.30	1.04	67.77
	20		18.86	23.16	1.09	74.46
	40		19.33	23.25	1.09	75.93
TiO ₂ /PDI2	0	Forward scan	17.13	23.19	1.06	69.94
	20		17.28	23.18	1.06	70.63
	40		17.50	23.17	1.06	71.68
	0	Reverse scan	19.08	23.25	1.07	76.82
	20		19.76	23.32	1.07	79.21
	40		19.84	23.30	1.07	79.52

Table S1 Device metrics of perovskite solar cells w/o PDI2 interlayer upon continuous illumination.

Fig. S5 (a) The PCE of perovskite solar cells with varying thickness of the PDI2 interlayer from forward and reverse scans. (b) PDI2 conductivity as a function of thickness. The electrical conductivity (σ) was determined from devices structure of ITO/TiO₂/PDI2/Ag, by using $J=\sigma L^{-1}V$, where *L* is the thickness.

References

1 Y. Zhong, M. T. Trinh, R. Chen, W. Wang, P. P. Khlyabich, B. Kumar, Q. Xu, C.-Y. Nam, M. Y. Sfeir, C. Black, M. L. Steigerwald, Y.-L. Loo, S. Xiao, F. Ng, X.-Y. Zhu and C. Nuckolls, *J. Am. Chem. Soc.*, 2014, **136**, 15215.

2 Y. Zhong, B. Kumar, S. Oh, M. T. Trinh, Y. Wu, K. Elbert, P. Li, X. Zhu, S. Xiao, F. Ng, M. L. Steigerwald and C. Nuckolls, *J. Am. Chem. Soc.*, 2014, **136**, 8122.