Supporting Information

Layered Tin Sulfide and Selenide Anode Materials

for Li- and Na-ion Batteries

Zengxi Wei,^a Lei Wang,^a Ming Zhuo,^a Wei Ni,^{b,c,*} Hongxia Wang^{d,*} and Jianmin Ma^{a,e,*}

^aSchool of Physics and Electronics, Hunan University, Changsha 410082, P.R. China

^bFaculty of Technology, University of Oulu, Oulu 90014, Finland

^cPanzhihua University, Panzhihua 617000, P.R. China

^dSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia

^eKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P.R. China

Type of materials	Current	Cycle	Cut-off	Specific capacity	Mass	References
	density	number	voltage [V]	[mAh g ⁻¹]	loading	
	[mA g ⁻¹]				[mg cm ⁻²]	
SnS nanorods	150	20	0.01-2.0	422	/	[1]
SnS nanosheets	782	50	0.01-1.3	560	/	[2]
SnS nanoflowers	50	30	0.01-1.1	580	/	[3]
3D hierarchical SnS	50	50	0.02-1.5	520	~2	[4]
(hollow microflowers)						
Yolk-shell SnS	1000	150	0.001-1.0	672	/	[5]
SnS NPs@C (700 °C)	40	40	0.02-1.2	484	/	[6]
Net-like SnS/C film	40	40	0.02-1.2	542	/	[7]
(spin-coated, 650 °C)						
Porous SnS nanorods/C	50	50	0.01–2.0	696	/	[8]
Hollow yolk-shell	100 (500)	50 (300)	0.01-2.5	936 (830)	~1.1	[9]
SnS@C						
Flower-like SnS@C	5000	1550	0.01-3.0	530	/	[10]
SnS NPs@CNFs	200	100	0.01-2.2	530	1.34	[11]
Se-doped SnS	200	50/100	0.01-2.2	742/693	1.34	[11]
NPs@CNFs						
$(SnS_{0.9}Se_{0.1})$						
Porous interconnected	1000	200/300	0.01-3.0	607/535	~0.6-0.8	[12]
SnS/C						
SnS/rGO	500	50	0–3	575	~1.1	[13]
SnS NPs/rGO	200	70	0.01-3.0	559	~0.7	[14]
SnS NPs/rGO	50	50	0.01-3.0	535	/	[15]
SnS NPs/N-rGO	50	60	0.01-3.0	466	/	[16]
SnS nanorods/rGO	160	50	0.01-2.5	602	/	[17]
SnS nanorods	500 (100)	1000/1500	0.1-3.0	600/550 (~850)	~2.1	[18]
/graphene		(200)				
SnS nanosheet	100	100	0.05-1.5	560	~1.5	[19]
/graphene						
SnS/spherical graphene	100 (1000)	100 (300)	0.01-3.0	800 (527)	~1.0	[20]
framework						
Prelithiated	100	100	0.01-3.0	1016	1.0	[21]
SnS/graphene						
SnS/MoS ₂ -C	200 (2000)	60 (700)	0.01-3.0	990 (718)	/	[22]
Sandwich-like SnS/PPy	100 (1000)	50 (300)	0.01-3.0	967 (703)	1.5-2.0	[23]
SnS@PPy-	100 (1000)	100 (500)	0.01-3.0	887 (757)	/	[24]
nanobelt/CNTs paper						

 Table S1. Summary of the Li-storage performance of typical SnS.

SnS-SnSe	150	50	0.01-3.0	613	/	[25]
nanocomposite						

Note: The theoretical capacity of SnS (reversible) is 782 mAh g^{-1} for LIBs.[18]

Type of materials	Current	Cycle number	Cut-off voltage	Specific	Mass	References
	density		[V]	capacity	loading	
	[mA g ⁻¹]			[mAh g ⁻¹]	$[mg \ cm^{-2}]$	
SnS nanotablets	125	30	0.1–2.0	~370	/	[26]
SnS 3D flowers	150 (800)	50 (50)	0.01-2.0	275 (180)	2–3	[27]
SnS/C particles	100	50	0.01-2.0	415	~2.9	[28]
SnS@C microplates	1000	50	0.01-2.0	445	/	[29]
5nm-SnS NPs/C	1000	200	0.01-2.9	518	/	[30]
nanospheres						
SnS-C	100	80	0.01-2.0	532	~2.0	[31]
nanocomposite						
SnS@C nanotubes	200	100	0.01-3.0	440	~1.0	[32]
Porous	1000	100/200/300	0.01-3.0	282/270/266	~0.6–0.8	[12]
interconnected						
SnS/C						
Cubic-like SnS/C	500	50	0.001-2.0	433	~1.2	[33]
microspheres						
Sn-SnS-C	100	150	0.01-2.0	407	/	[34]
SnS NPs/CNTs	50 (500)	50 (100)	0.01-2.0	356 (210)	/	[35]
Flower-like	50	100	0.01-2.5	364	1.0±0.2	[36]
SnS/CNTs						
SnS nanoflakes/S-	1000	100	0.01-3.0	474	1.0±0.1	[37]
doped N-rich C NSs						
SnS NPs/N-doped C	100	50	0.01-2.5	853	1.5	[38]
nanosheet networks	1000 (5000)	1000		484 (322)		
				/428/331	/2.8/4.3	
SnS/rGO	30	50 (250)	0.01-3.0	940 (492/308)	1.0±0.2	[39]
	(810/7290)					
SnS/rGO	100	100	0.01-2.0	386	~3	[40]
SnS/rGO	50	30	0.01-2.0	500	~2.0	[41]
SnS NPs/3D N-	2000	1000	0.01-2.5	510	~1.1–1.3	[42]
doped graphene						
SnS NS arrays	100	200	0.01-3.0	1010	~1.0	[43]
/graphene foam						
Free-standing	300	50/250	0.01-2.7/0.01-0.	946/~500	~2.2	[44]
tetrahedral			5			
SnS/MWCNTs						
C-coated SnS NSs	100 (3000)	100 (500)	0.01-2.0	792 (345)	/	[45]
/carbon fiber paper						
SnS NPs/Mxene	500	50	0.01-3.0	~320	/	[46]

Table S2. Summary of the Na-storage performance of typical SnS.

C@SnS/SnO ₂	30	50/300 (500)	0.01-2.0	715/618	1.0±0.2	[47]
@graphene	(810/2430)			(409/360)		
Heterostructures						
Yolk-shell SnS-	500/7000	100	0.001-2.5	396/238	~1.4	[48]
MoS ₂ mircrospheres						

Note: The theoretical capacity of SnS (reversible) is 667 mAh g^{-1} for NIBs.[49]

Type of materials	Current density	Cycle	Cut-off	Specific	Mass	References
	$[mA g^{-1}]$	number	voltage [V]	capacity	loading	
				[mAh g ⁻¹]	$[mg \ cm^{-2}]$	
SnS ₂ nanoplates	323	30	0.001-1.1	583	/	[50]
SnS ₂ nanoplates	100	50	0.05-1.2	332	/	[51]
SnS ₂ nanoplates	100	50	0.05-1.2	521	/	[52]
SnS ₂ nanoplates	200	30	0.0-3.0	935	/	[53]
SnS ₂ nanosheets	323	50	0-1.15	~500	/	[54]
SnS ₂ nanosheets	100	100	0.01-1.5	437	/	[55]
SnS ₂ nanosheets	100	50	0.005-1.15	513	/	[56]
SnS ₂ nanoplates	100/500	50/80	0.005-1.1	515/470	/	[57]
Plate-like SnS ₂	100	30	0.05-1.2	390/540	/	[58]
(stacked/individual)						
Flower-like SnS ₂	100	50	0.05-1.2	387	/	[51]
Flower-like SnS ₂	100	50	0.01-2.0	~458	/	[59]
Flow-like SnS ₂ microspheres	80	50	0.05-2.0	475	/	[60]
SnS ₂ nanoflowers	100	100	0.01-1.5	542	/	[55]
3D hierarchical SnS ₂	645/3225/6450	100	0.001-1.3	570/486/264	/	[61]
mcirospheres						
3D SnS ₂ hierarchitectures	100	100	0.01-2.0	550	/	[62]
SnS ₂ hollow microspheres	64.5	60	0.001-1.2	430	/	[63]
SnS ₂ 3D nanoflake-based hollow	64.5	60	0.001-1.2	532	/	[63]
microspheres						
SnS ₂ nanoflowers	400	100	0.01-1.3	456	/	[64]
/acetylene black			/0.01-2.5	/~700		
SnS ₂ NPs/CNTs arrays	100 (1000)	50 (100)	0.01-2.5	551 (~300)	/	[65]
SnS ₂ nanosheet arrays on Sn foil	645	10	0.5-2.0	1050	/	[66]
SnS ₂ -SnO ₂ nanorods	200	25	0.01-1.15	536	/	[67]
SnS ₂ NPs@C	50	50	0.0-1.2	668	/	[68]
SnS ₂ NSs@MWCNTs	100	50	0.01-1.15	~450	/	[69]
coaxial nanocables						
SnS ₂ NSs@MWCNTs	645	100	0.2-1.3	432	0.3-0.4	[70]
SnS ₂ NPs/SWCNTs	1000	100	0.01-3.0	509	/	[71]
SnS ₂ nanoflakes	100	50	0.01-1.2	373	~1.4	[72]
/CNTs						
SnS ₂ nanoflakes /MWCNTs	100	50	0.005-1.15	~510	/	[73]
SnS ₂ nanoplates	400	800	0.01-3.0	823	~1.0	[74]
/graphene nanoribbons						
SnS ₂ NPs/rGO	100	200	0.05-3.0	1005	/	[75]
(nanoplates and ultrafine NCs)						

Table S3. Summary of the Li-storage performance of typical SnS_2 .

SnS ₂ NPs@rGO	120	60	0.01-3.0	564	/	[76]
SnS2 NPs@graphene	322.5 (1290)	80	0.001-2.0	405 (304)	/	[77]
SnS ₂ @rGO	58.4	50	0.001-3.0	577	/	[78]
Ultrasmall SnS ₂	64.5/645	200	0.001-2.5	1034/737	/	[79]
nanocrystals@rGO	(645/1935/3225)	(450)		(773/570/415)		
$SnS_{x(1 \le x \le 2)}$ nanocrystal	0.2C	150	0.02-2.5	860	~0.8	[80]
/graphene						
SnS ₂ nanotablets	0.5C	200	0.005-1.0	504	/	[81]
@graphene						
SnS ₂ nanosheets	100	30	0.01-3.0	1114	/	[82]
/graphene						
Orientated SnS ₂	50	100	0.005-3.0	704	~2	[83]
nanoplates/graphene						
SnS ₂ NSs/rGO	66/660	40	0.005-3.0	896/657	~1.5	[84]
Few-layer SnS ₂ /graphene	100	50	0.01-1.5	920	/	[85]
SnS_2 nanoplates /graphene	50	30	0.005-1.3	~650	~2-3	[86]
SnS ₂ /N-doped rGO	200	200	0.01-1.3	562	0.8-1.0	[87]
Ultrasmall SnS ₂ /N-doped	200 (800)	120 (150)	0.01-3.0	1407 (914)	1.6±0.2	[88]
graphene						
SnS ₂ /S-doped graphene	1000 (5000)	200 (600)	0.005-3.0	947 (532)	/	[89]
SnS ₂ @graphene nanocable	200	350	0.01-3.0	720	/	[90]
network						
SnS ₂ /graphene aerogels	50	30	0.01-3.0	656	/	[91]
SnS ₂ NS/graphene foam	1000	50	0.01-2.0	451	~1.4–1.6	[92]
SnS ₂ nanoflakes	1000	500	0.01-2.5	818	/	[93]
/graphene foam						
SnS ₂ /MoS ₂ /graphene foam	200	50	0.01-3.0	~800	~1.75–1.8	[94]
CC-VN@SnS ₂	650 (13000)	100	0.01-3.0	791 (349/231)	3.1	[95]
(carbon cloth supported		(70/650)				
vanadium nitride/SnS $_2$ NS)						
Flexible SnS ₂ NSs	100	100	0.01-3.0	1018	/	[96]
/Gr-CNTs paper						
$SnS_2/MoS_2/graphene$	80	100	0.01-3.0	743	/	[97]
$SnS_2/MoS_2/graphene$	150/750	190/200	0.01-3.0	1244/772	~1.3	[98]
SnS ₂ @TiO ₂ layer	100	50	0.01-1.2	324	/	[99]
SnS ₂ /TiO ₂ /rGO	50	200	0.05-3.0	485	~1	[100]
SnO ₂ @SnS ₂ @rGO	200 (500)	100	0.01-2.0	583 (487)	/	[101]
$SnS_2/SnO_2/C$ heterostructures	100	300	0.05-3.0	712	0.59	[102]
SnS ₂ @PANi nanoplates	100	80	0.01-3.0	731	/	[103]

Note: The theoretical capacity of SnS_2 (reversible) is 645 mAh g^{-1} for LIBs.[74]

Type of materials	Current density	Cycle	Cut-off voltage	Specific	Mass	References
	$[mA g^{-1}]$	number	[V]	capacity	loading	
				$[mAh g^{-1}]$	[mg cm ⁻²]	
SnS ₂ nanoplates	100	50	0.005-2.0	242/187	/	[57]
Ultrathin SnS ₂	100	50	0.005-3.0	647	/	[104]
nanosheets						
(3-4 nm)						
SnS_2 nanoarrays	200	200	0.01-3.0	~810	3.98	[105]
SnS_2 nanowall arrays on	500	100	0.01-2.5	510	~0.3	[106]
stainless steel						
SnS ₂ /CNTs	1000	100/200/300	0.01-2.5	625/602/556	/	[107]
SnS ₂ /Mxene	100	200	0.01-2.5	322	/	[108]
$SnS_2/MoS_2/graphene$	80	100	0.01-3.0	100	/	[97]
SnS ₂ /SnO ₂ /CNTs	50	100	0.01-2.5	355	~1.2	[109]
Flower-like SnS ₂	20	10 (20)	0–3	448 (255)	/	[110]
Flower-like SnS ₂ /CNTs	20	10 (20)	0–3	485 (333)	/	[110]
Flower-like SnS ₂ /rGO	50	100	0.01-3.0	509	/	[111]
SnS ₂ /rGO	200 (1000)	100 (400)	0.01-2.5	628 (500)	0.8-1.0	[112]
SnS ₂ @rGO	200 (800)	300 (1000)	0.005-3.0	509 (300)	/	[113]
SnS ₂ /graphene	200	100	0.01-2.5	619	1.0-1.5	[114]
SnS ₂ /rGO	200	100	0.01-2.5	627	~2	[115]
SnS ₂ nanoplatelet	20	60	0.01-3.0	670	~1.0	[116]
@graphene						
Ultrathin SnS ₂ /rGO	2500	150	0–3	~338	1.5	[117]
SnS ₂ nanoplates/rGO	200/1000/2000	100	0.01-3.0	615/542/437	~1.6	[118]
Ultrasmall SnS ₂ /N-	200	100	0.01-3.0	450	1.6±0.2	[88]
doped graphene						
Sandwiched SnS ₂	100 (200/840)	100 (200)	0.01-2.5	826	1.27	[119]
NSs/rGO				(~760/~570)	(~0.8)	
				(based on SnS_2		
				mass only)		
SnS ₂ /S-doped graphene	100 (2000)	85 (400)	0.01-3.0	530 (~300)	/	[89]
SnS ₂ /C nanospheres	50	100	0.005-2.5	570	/	[120]
SnS_2 nanosheets@C	200	100	0.01-3.0	525/588/631	~1.0	[121]
hollow structures						
SnS ₂ /EDA-rGO	200 (1000)	100 (1000)	0.01-3.0	680 (480)	1±0.15	[122]
SnS2 nanocrystalline	50 (500)	50 (150)	0–2	~600 (450)	/	[123]
@rGO						
Flexible 2nm-SnS ₂	1000/5000	1500	0.01-3.0	334/255	0.78	[124]
nanocrystals/graphene						

Table S4. Summary of the Na-storage performance of typical SnS_2 .

nanoribbons paper						
SnS ₂ @graphene	200 (1200)	100 (200)	0.01-1.0	548 (378)	1.93	[125]
nanosheet arrays on						
carbon cloth						
SnS ₂ NCs@N,S-doped	20	50	0.01-3.0	527	0.55	[126]
graphene aerogels						
$SnS_2/MoS_2/graphene$	150/750/1500	100/150/150	0.01-3.0	655/612/546	~1.3	[98]

Note: The theoretical capacity of SnS_2 (reversible) is 584 mAh g^{-1} for NIBs.[127]

Type of materials	Current density [mA g ⁻¹]	Cycle number	Cut-off voltage [V]	Specific capacity [mAh g ⁻¹]	Mass loading [mg cm ⁻²]	References
SnSe nanocrystals	0.1C	1/30	0.01-2.5	~425/~180	~4	[128]
SnSe nanosheets	50	2/20	0.01-3.0	~410/73	10	[129]
Ultrathin SnSe	200	300	0.01-3.0	788	~1	[130]
nanoplates						
SnSe thin film	130 (10 μA cm ⁻	40	0.01–2.5	~400	/	[131]
	²)	50	0.01.2.0	(12)		[0.5]
SnSe-SnS	150 (3 μ A cm ⁻	50	0.01-3.0	613	/	[25]
nanocomposite thin film	²)	100/200	0.01.2.0	1144/601	1.0	[120]
$SnSe_{0.5}S_{0.5}$ nanoplates	100/500	100/200	0.01-3.0	1144/681	~1.0	[132]
SnSe/C nanocomposite	500	100	0.01-3.0	633	0.8–1.2	[133]
(carbon black)	100	• • •		(a (54.0.43
SnSe/C (Super P)	100	200	0.0–2.5	626	~3.1	[134]
SnSe _x -MWCNT	40	50	0.01-3.0	651	~2	[135]
SnSe@CNFs	200	100	0.01–2.5	840	/	[136]
SnSe _{0.5} S _{0.5} /C nanocomposite (glucose-derived C)	1000	500	0.01–3.0	625	~1.0	[137]
SnSe NCs/rGO	100	100	0.01-3.0	764	/	[138]
SnSe ₂ nanodots/rGO	150	50	0.05-3.0	659	/	[139]
SnSe2 quantum dots/rGO	200/2000	500/3000	0.01-3.0	746/410	/	[140]
SnSe ₂ nanoplate/rGO	40	30	0.001-3.0	640	0.95	[141]
Flexible SnSe NCs/carbon fabric	200	80	0.01–3.0	676	2–3	[142]
Free-standing SnSe/SnO _x @CNFs membrane	200/1000	70/1000	0–3	741/345	/	[143]

Table S5. Summary of the Li-storage performance of typical SnSe and SnSe₂.

Note: The theoretical capacity of SnSe and $SnSe_2$ (reversible) is 847 and 800 (426) mAh g⁻¹ for LIBs.[134, 140, 141]

Type of materials	Current density	Cycle	Cut-off voltage	Specific	Mass	References
	$[mA g^{-1}]$	number	[V]	capacity [mAh	loading	
				g^{-1}]	$[mg \ cm^{-2}]$	
SnSe nanoplates	300	50	0.001-3.0	558	~0.2	[144]
Ultrathin SnSe	50	300	0.01-3.0	393	~1	[130]
nanoplates						
(2D ladder-like cluster)						
3D SnSe nanosheet	25	30	0.0-3.0	730	~0.8	[145]
clusters	(200/2000/5000)	(100)		(271/183/70)		
SnSe _x flowerlike	200	50	0.01-3.0	272	/	[146]
composite						
(SnSe/SnSe ₂)						
SnSe/C (Super P)	143	50	0.0–2.0	707	~1-2	[147]
SnSe/C nanocomposite	500	200	0.01-2.0	325	0.8–1.2	[133]
(carbon black)						
SnSe _{0.5} S _{0.5} /C	200	100	0.01-3.0	430	~1.0	[137]
nanocomposite						
(glucose-derived C)						
SnSe/rGO	100/1000	50/115	0.01-2.0	570/385	1±0.1	[148]
SnSe ₂ NSs/rGO	100	100	0.005-2.5	515	~1.2	[149]
nanocomposite						

Table S6. Summary of the Na-storage performance of typical SnSe and SnSe₂.

Note: The theoretical capacity of SnSe and SnSe₂ is 780 and 756 mAh g^{-1} for NIBs.[145, 147, 149]

Type of materials	Current density	Cycle	Cut-off voltage	Specific	Mass	References
	$[mA g^{-1}]$	number	[V]	capacity	loading	
				$[mAh g^{-1}]$	$[mg \ cm^{-2}]$	
SnTe/C nanocomposite	100	100	0.0–2.5	647	4.43	[150]
				(1308 mAh		
				cm ⁻³)		
SnTe-TiC-C composite	100	100/400	0.0–2.5	398/~408	1.3–1.7	[151]
				(652 mAh		
				cm ⁻³)		
SnTe-rGO composite	100	100	0.05-2.5	690	~1.5	[152]
				(3015 mAh		
				cm ⁻³)		

Table S7. Summary of the Li-storage performance of typical SnTe.

Note: The theoretical capacity of SnTe is 680 (696) mAh g^{-1} for LIBs.[150, 152]

Type of materials	Current density	Cycle	Cut-off voltage	Specific	Mass	References
	$[mA g^{-1}]$	number	[V]	capacity	loading	
				$[mAh g^{-1}]$	$[mg cm^{-2}]$	
SnTe/C nanocomposite	100	100	0.0–2.5	647	4.43	[150]
				(1308 mAh		
				cm ⁻³)		
SnTe-rGO composite	100	100	0.05-2.5	288	~1.5	[152]
				(1260 mAh		
				cm ⁻³)		

Table S8. Summary of the Na-storage performance of typical SnTe.

Note: The theoretical capacity of SnTe is 626 $\,$ mAh g^{-1} for NIBs.[150] $\,$

Abbreviations

NPs: Nanoparticles NRs: Nanorods Nanowires: NWs NSs: Nanosheets NCs: Nanocrystals CNTs: Carbon nanotubes SWCNTs: Single-walled carbon nanotubes GWCNTs: Multi-walled carbon nanotubes Gr: Graphene rGO: Reduced graphene oxide N-rGO: N-doped rGO N-Gr: N-doped graphene GF: Graphene foam CNFs: Carbon nanofibers

References

[1] J. Zhu, D. Wang, T. Liu, One-pot synthesis of SnS nanorods and their lithium storage properties, Ionics, 20 (2014) 141-144.

[2] J.-G. Kang, J.-G. Park, D.-W. Kim, Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries, Electrochem. Commun., 12 (2010) 307-310.

[3] D.D. Vaughn, O.D. Hentz, S. Chen, D. Wang, R.E. Schaak, Formation of SnS nanoflowers for lithium ion batteries, Chem. Commun., 48 (2012) 5608-5610.

[4] S. Li, J. Zheng, Z. Hu, S. Zuo, Z. Wu, P. Yan, F. Pan, 3D-hierarchical SnS nanostructures: controlled synthesis, formation mechanism and lithium-ion storage performance, RSC Adv., 5 (2015) 72857-72862.

[5] S.H. Choi, Y.C. Kang, Synthesis for Yolk-shell-structured Metal Sulfide Powders with Excellent Electrochemical Performances for Lithium-ion Batteries, Small, 10 (2014) 474-478.

[6] Y. Li, J. Tu, X. Huang, H. Wu, Y. Yuan, Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries, Electrochim. Acta, 52 (2006) 1383-1389.

[7] Y. Li, J. Tu, X. Huang, H. Wu, Y. Yuan, Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries, Electrochem. Commun., 9 (2007) 49-53.

[8] J. Cai, Z. Li, P.K. Shen, Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries, ACS Appl. Mater. Interfaces, 4 (2012) 4093-4098.

[9] Z. Deng, H. Jiang, Y. Hu, C. Li, Y. Liu, H. Liu, Nanospace-confined synthesis of coconut-like SnS/C nanospheres for high-rate and stable lithium-ion batteries, AlChE J., (2018) DOI: 10.1002/aic.16068.

[10] Q. Lian, G. Zhou, J. Liu, C. Wu, W. Wei, L. Chen, C. Li, Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling, J. Power Sources, 366 (2017) 1-8.

[11] L. Lu, L. Zhang, H. Zeng, B. Xu, L. Wang, Y. Li, Enhanced cycling performance of Se-doped SnS carbon nanofibers as negative electrode for lithium-ion batteries, J. Alloys Compd., 695 (2017) 1294-1300.

[12] C. Zhu, P. Kopold, W. Li, P.A. van Aken, J. Maier, Y. Yu, A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries, Adv. Sci., 2 (2015) 1500200.

[13] J. Zhu, X. Zhang, C. Zeng, A. Liu, G. Hu, Preparation of SnS/graphene nanocomposites from Sn/graphene for superior reversible lithium storage, Mater. Lett., 209 (2017) 338-341.

[14] J. Li, X. Zhao, Z. Zhang, Ultradispersed nanoarchitecture of SnS nanoparticles/reduced graphene oxide for enhanced sodium storage performance, J. Colloid Interface Sci., 498 (2017) 153-160.

[15] H.-C. Tao, X.-L. Yang, L.-L. Zhang, S.-B. Ni, One-step in situ synthesis of SnS/graphene nanocomposite with enhanced electrochemical performance for lithium ion batteries, J. Electroanal. Chem., 728 (2014) 134-139.

[16] S.-C. Zhu, H.-C. Tao, X.-L. Yang, L.-L. Zhang, S.-B. Ni, Synthesis of N-doped graphene/SnS composite and its electrochemical properties for lithium ion batteries, Ionics, 21 (2015) 2735-2742.

[17] A.M. Tripathi, S. Mitra, The influence of electrode structure on the performance of an SnS anode in Li-ion batteries: effect of the electrode particle, conductive support shape and additive, RSC Adv., 5 (2015) 23671-23682.

[18] F.M. Hassan, Q. Hu, J. Fu, R. Batmaz, J. Li, A. Yu, X. Xiao, Z. Chen, Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 9 (2017) 20603-20612.

[19] S. Li, J. Zheng, S. Zuo, Z. Wu, P. Yan, F. Pan, 2D hybrid anode based on SnS nanosheet bonded with graphene to enhance electrochemical performance for lithium-ion batteries, RSC Adv., 5 (2015) 46941-46946.

[20] B. Zhao, Z. Wang, F. Chen, Y. Yang, Y. Gao, L. Chen, Z. Jiao, L. Cheng, Y. Jiang, Three-Dimensional Interconnected Spherical Graphene Framework/SnS Nanocomposite for Anode Material with Superior Lithium Storage Performance: Complete Reversibility of Li2S, ACS Appl. Mater. Interfaces, 9 (2017) 1407-1415.

[21] B. Zhao, F. Chen, Z. Wang, S. Huang, Y. Jiang, Z. Chen, Lithiation-assisted exfoliation and reduction of SnS2 to SnS decorated on lithium-integrated graphene for efficient energy storage, Nanoscale, 9 (2017) 17922-17932.

[22] Q. Pan, F. Zheng, Y. Wu, X. Ou, C. Yang, X. Xiong, M. Liu, MoS2-covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life, J. Mater. Chem. A, 6 (2018) 592-598.

[23] J. Liu, M. Gu, L. Ouyang, H. Wang, L. Yang, M. Zhu, Sandwich-like SnS/polypyrrole ultrathin nanosheets as high-performance anode materials for Li-ion batteries, ACS Appl. Mater. Interfaces, 8 (2016) 8502-8510.

[24] J. Liu, Y. Wen, P.A. van Aken, J. Maier, Y. Yu, In situ reduction and coating of SnS 2 nanobelts for free-standing SnS@ polypyrrolenanobelt/carbon-nanotube paper electrodes with superior Li-ion storage, J. Mater. Chem. A, 3 (2015) 5259-5265.

[25] K. Wei, Y. Zhao, J. Liu, S. Liu, Y. Cui, R. Zhu, Y. Yang, Y. Cui, Pulsed Laser Deposited SnS-SnSe Nanocomposite as a New Anode Material for Lithium Ion Batteries, Int. J. Electrochem. Sci., 12 (2017) 7404-7410.

[26] P.K. Dutta, U.K. Sen, S. Mitra, Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode, RSC Adv., 4 (2014) 43155-43159.

[27] E. Cho, K. Song, M.H. Park, K.W. Nam, Y.M. Kang, SnS 3D Flowers with Superb Kinetic Properties for Anodic Use in Next-Generation Sodium Rechargeable Batteries, Small, 12 (2016) 2510-2517.

[28] S. Pervez, D. Kim, S.-M. Lee, C.-H. Doh, S. Lee, U. Farooq, M. Saleem, Study of tin-sulphur-carbon nanocomposites based on electrically exploded tin as anode for sodium battery, J. Power Sources, 315 (2016) 218-223.

[29] X. Li, J. Liu, L. Ouyang, B. Yuan, L. Yang, M. Zhu, Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries, Appl. Surf. Sci., 436 (2018) 912-918.

[30] J. Wang, Y. Lu, N. Zhang, X. Xiang, J. Liang, J. Chen, Ultrasmall SnS nanoparticles embedded in carbon spheres: a high-performance anode material for sodium ion batteries, RSC Adv., 6 (2016) 95805-95811.

[31] L. Wu, H. Lu, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, A tin(ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries, J. Mater. Chem. A, 2 (2014) 16424-16428.

[32] P. He, Y. Fang, X.-Y. Yu, X.W. Lou, Hierarchical Nanotubes Constructed by Carbon-Coated Ultrathin SnS Nanosheets for Fast Capacitive Sodium Storage, Angew. Chem. Int. Ed., 56 (2017) 12202-12205.

[33] S.H. Choi, Y.C. Kang, Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries, Nano Res., 8 (2015) 1595-1603.

[34] L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, A Sn–SnS–C nanocomposite as anode host materials for Naion batteries, J. Mater. Chem. A, 1 (2013) 7181-7184.

[35] Y. Chen, B. Wang, T. Hou, X. Hu, X. Li, X. Sun, S. Cai, H. Ji, C. Zheng, Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery, Chin. Chem. Lett., 29 (2018) 187-190.

[36] S. Zhang, L. Yue, H. Zhao, Z. Wang, J. Mi, Mwents wrapped flower-like SnS composite as anode material for sodium-ion battery, Mater. Lett., 209 (2017) 212-215.

[37] J. Sheng, L. Yang, Y.-E. Zhu, F. Li, Y. Zhang, Z. Zhou, Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries, J. Mater. Chem. A, 5 (2017) 19745-19751.

[38] X. Hu, J. Chen, G. Zeng, J. Jia, P. Cai, G. Chai, Z. Wen, Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries, J. Mater. Chem. A, 5 (2017) 23460-23470.

[39] T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS, ACS Nano, 8 (2014) 8323-8333.

[40] L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium-storage performance of stannous sulfide@ reduced graphene oxide composite as high capacity anodes for sodium-ion batteries, J. Power Sources, 293 (2015) 784-789.

[41] Y.C. Lu, C. Ma, J. Alvarado, N. Dimov, Y.S. Meng, S. Okada, Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries, J. Mater. Chem. A, 3 (2015) 16971-16977.

[42] X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou, J.-H. Wang, B. Zhao, M. Liu, Z. Lin, K. Huang, SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries, Energy Environ. Sci., 10 (2017) 1757-1763.

[43] D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S.V. Savilov, J. Lin, H.J. Fan, Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun., 7 (2016) 12122.

[44] J. Choi, N.R. Kim, K. Lim, K. Ku, H.J. Yoon, J.G. Kang, K. Kang, P.V. Braun, H.-J. Jin, Y.S. Yun, Tin Sulfide-Based Nanohybrid for High-Performance Anode of Sodium-Ion Batteries, Small, 13 (2017) 1700767.

[45] C. Xia, F. Zhang, H. Liang, H.N. Alshareef, Layered SnS sodium ion battery anodes synthesized near room temperature, Nano Res., (2017) 1-10.

[46] Y. Zhang, B. Guo, L. Hu, Q. Xu, Y. Li, D. Liu, M. Xu, Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage, J. Alloys Compd., 732 (2018) 448-453.

[47] Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries, Angew. Chem. Int. Ed., 55 (2016) 3408-3413.

[48] S.H. Choi, Y.C. Kang, Synergetic Effect of Yolk–Shell Structure and Uniform Mixing of SnS–MoS2 Nanocrystals for Improved Na-Ion Storage Capabilities, ACS Appl. Mater. Interfaces, 7 (2015) 24694-24702.

[49] Y. Xiao, S.H. Lee, Y.-K. Sun, The Application of Metal Sulfides in Sodium Ion Batteries, Adv. Energy Mater., 7 (2017) 1601329.
[50] J.W. Seo, J.T. Jang, S.W. Park, C. Kim, B. Park, J. Cheon, Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries, Adv. Mater., 20 (2008) 4269-4273.

[51] J. Ma, D. Lei, X. Duan, Q. Li, T. Wang, A. Cao, Y. Mao, W. Zheng, Designable fabrication of flower-like SnS2 aggregates with excellent performance in lithium-ion batteries, RSC Adv., 2 (2012) 3615-3617.

[52] L. Wang, L. Zhuo, Y. Yu, F. Zhao, High-rate performance of SnS2 nanoplates without carbon-coating as anode material for lithium ion batteries, Electrochim. Acta, 112 (2013) 439-447.

[53] Y. Du, Z. Yin, X. Rui, Z. Zeng, X.-J. Wu, J. Liu, Y. Zhu, J. Zhu, X. Huang, Q. Yan, A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS 2 nanoplates for high-performance lithium-ion batteries, Nanoscale, 5 (2013) 1456-1459.
[54] T.-J. Kim, C. Kim, D. Son, M. Choi, B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries, J. Power Sources, 167 (2007) 529-535.

[55] A. Bhaskar, M. Deepa, T.N. Rao, Tin Disulfide Nanoflowers versus Nanosheets as Anodes in Lithium-ion Batteries: How the Nanostructure Controls Performance, Electrochim. Acta, 184 (2015) 239-249.

[56] C. Zhai, N. Du, H.Z.D. Yang, Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage, Chem. Commun., 47 (2011) 1270-1272.

[57] Y. Xie, M. Fan, T. Shen, Q. Liu, Y. Chen, SnS2 nanoplates as stable anodes for sodium ion and lithium ion batteries, Mater. Technol., 31 (2016) 646-652.

[58] J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang, W. Zheng, Plate-like SnS2 nanostructures: hydrothermal preparation, growth mechanism and excellent electrochemical properties, CrystEngComm, 14 (2012) 832-836.

[59] M.K. Jana, H. Rajendra, A.J. Bhattacharyya, K. Biswas, Green ionothermal synthesis of hierarchical nanostructures of SnS 2 and their Li-ion storage properties, CrystEngComm, 16 (2014) 3994-4000.

[60] D. Lei, M. Zhang, B. Qu, J. Ma, Q. Li, L. Chen, B. Lu, T. Wang, Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries, Electrochim. Acta, 106 (2013) 386-391.

[61] J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries, J. Power Sources, 196 (2011) 3650-3654.

[62] Q. Wu, L. Jiao, J. Du, J. Yang, L. Guo, Y. Liu, Y. Wang, H. Yuan, One-pot synthesis of three-dimensional SnS2 hierarchitectures as anode material for lithium-ion batteries, J. Power Sources, 239 (2013) 89-93.

[63] J. Xia, G. Li, Y. Mao, Y. Li, P. Shen, L. Chen, Hydrothermal growth of SnS 2 hollow spheres and their electrochemical properties, CrystEngComm, 14 (2012) 4279-4283.

[64] M. He, L.-X. Yuan, Y.-H. Huang, Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage, RSC Adv., 3 (2013) 3374-3383.

[65] W. Deng, X. Chen, Z. Liu, A. Hu, Q. Tang, Z. Li, Y. Xiong, Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries, J. Power Sources, 277 (2015) 131-138.

[66] H. Zhong, G. Yang, H. Song, Q. Liao, H. Cui, P. Shen, C.-X. Wang, Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: excellent energy storage, catalysis, photoconduction, and field-emitting performances, J. Phys. Chem. C, 116 (2012) 9319-9326.

[67] P. Wu, N. Du, H. Zhang, J. Liu, L. Chang, L. Wang, D. Yang, J.-Z. Jiang, Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities, Nanoscale, 4 (2012) 4002-4006.

[68] H.S. Kim, Y.H. Chung, S.H. Kang, Y.-E. Sung, Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries, Electrochim. Acta, 54 (2009) 3606-3610.

[69] C. Zhai, N. Du, H. Zhang, J. Yu, D. Yang, Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries, ACS Appl. Mater. Interfaces, 3 (2011) 4067-4074.

[70] J.-G. Kang, G.-H. Lee, K.-S. Park, S.-O. Kim, S. Lee, D.-W. Kim, J.-G. Park, Three-dimensional hierarchical self-supported multiwalled carbon nanotubes/tin (iv) disulfide nanosheets heterostructure electrodes for high power Li ion batteries, J. Mater. Chem., 22 (2012) 9330-9337.

[71] Y. Liu, C. Wang, H. Yang, Z.-J. Shi, F.-Q. Huang, Uniform-loaded SnS2/single-walled carbon nanotubes hybrid with improved electrochemical performance for lithium ion battery, Mater. Lett., 159 (2015) 329-332.

[72] D. Guan, J. Li, X. Gao, C. Yuan, Carbon nanotube-assisted growth of single-/multi-layer SnS2 and SnO2 nanoflakes for high-performance lithium storage, RSC Adv., 5 (2015) 58514-58521.

[73] H. Sun, M. Ahmad, J. Luo, Y. Shi, W. Shen, J. Zhu, SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries, Mater. Res. Bull., 49 (2014) 319-324.

[74] C. Gao, L. Li, A.-R.O. Raji, A. Kovalchuk, Z. Peng, H. Fei, Y. He, N.D. Kim, Q. Zhong, E. Xie, J.M. Tour, Tin disulfide nanoplates on graphene nanoribbons for full lithium ion batteries, ACS Appl. Mater. Interfaces, 7 (2015) 26549-26556.

[75] Q. Zhang, R. Li, M. Zhang, B. Zhang, X. Gou, SnS2/reduced graphene oxide nanocomposites with superior lithium storage performance, Electrochim. Acta, 115 (2014) 425-433.

[76] J. Yin, H. Cao, Z. Zhou, J. Zhang, M. Qu, SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries, J. Mater. Chem., 22 (2012) 23963-23970.

[77] L. Ji, H.L. Xin, T.R. Kuykendall, S.-L. Wu, H. Zheng, M. Rao, E.J. Cairns, V. Battaglia, Y. Zhang, SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage, Phys. Chem. Chem. Phys., 14 (2012) 6981-6986.

[78] M. Sathish, S. Mitani, T. Tomai, I. Honma, Ultrathin SnS2 nanoparticles on graphene nanosheets: synthesis, characterization, and Liion storage applications, J. Phys. Chem. C, 116 (2012) 12475-12481.

[79] L. Mei, C. Xu, T. Yang, J. Ma, L. Chen, Q. Li, T. Wang, Superior electrochemical performance of ultrasmall SnS 2 nanocrystals decorated on flexible RGO in lithium-ion batteries, J. Mater. Chem. A, 1 (2013) 8658-8664.

[80] M. Zhang, D. Lei, X. Yu, L. Chen, Q. Li, Y. Wang, T. Wang, G. Cao, Graphene oxide oxidizes stannous ions to synthesize tin sulfidegraphene nanocomposites with small crystal size for high performance lithium ion batteries, J. Mater. Chem., 22 (2012) 23091-23097.

[81] Z. Jiang, C. Wang, G. Du, Y.J. Zhong, J.Z. Jiang, In situ synthesis of SnS2@graphene nanocomposites for rechargeable lithium batteries, J. Mater. Chem., 22 (2012) 9494-9496.

[82] L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhang, F. Zhao, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries, RSC Adv., 2 (2012) 5084-5087.

[83] S. Liu, X. Lu, J. Xie, G. Cao, T. Zhu, X. Zhao, Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as highperformance anode for Li-ion batteries, ACS Appl. Mater. Interfaces, 5 (2013) 1588-1595.

[84] P. Chen, Y. Su, H. Liu, Y. Wang, Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications, ACS Appl. Mater. Interfaces, 5 (2013) 12073-12082.

[85] K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, J.Y. Lee, Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode, J. Power Sources, 201 (2012) 259-266.

[86] B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, L. Zhi, Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage, Energy Environ. Sci., 5 (2012) 5226-5230.

[87] D.H. Youn, S.K. Stauffer, P. Xiao, H. Park, Y. Nam, A. Dolocan, G. Henkelman, A. Heller, C.B. Mullins, Simple Synthesis of Nanocrystalline Tin Sulfide/N-Doped Reduced Graphene Oxide Composites as Lithium Ion Battery Anodes, ACS Nano, 10 (2016) 10778-10788.

[88] Y. Jiang, Y. Feng, B. Xi, S. Kai, K. Mi, J. Feng, J. Zhang, S. Xiong, Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries, J. Mater. Chem. A, 4 (2016) 10719-10726.

[89] P. Zheng, Z. Dai, Y. Zhang, K.N. Dinh, Y. Zheng, H. Fan, J. Yang, R. Dangol, B. Li, Y. Zong, Q. Yan, X. Liu, Scalable synthesis of SnS2/S-doped graphene composites for superior Li/Na-ion batteries, Nanoscale, 9 (2017) 14820-14825.

[90] D. Kong, H. He, Q. Song, B. Wang, Q.-H. Yang, L. Zhi, A novel SnS2@ graphene nanocable network for high-performance lithium storage, RSC Adv., 4 (2014) 23372-23376.

[91] X. Jiang, X. Yang, Y. Zhu, J. Shen, K. Fan, C. Li, In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries, J. Power Sources, 237 (2013) 178-186.

[92] Z.X. Huang, Y. Wang, J.I. Wong, H.Y. Yang, Free standing SnS2 nanosheets on 3D graphene foam: an outstanding hybrid nanostructure anode for Li-ion batteries, 2D Mater., 2 (2015) 024010.

[93] Y. Ren, W. Lv, F. Wen, J. Xiang, Z. Liu, Microwave synthesis of SnS2 nanoflakes anchored graphene foam for flexible lithium-ion battery anodes with long cycling life, Mater. Lett., 174 (2016) 24-27.

[94] Z.X. Huang, Y. Wang, B. Liu, D. Kong, J. Zhang, T. Chen, H.Y. Yang, Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions, Sci. Rep., 7 (2017) 41015.

[95] M.-S. Balogun, W. Qiu, J. Jian, Y. Huang, Y. Luo, H. Yang, C. Liang, X. Lu, Y. Tong, Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries, ACS Appl. Mater. Interfaces, 7 (2015) 23205-23215.
[96] L. Zhang, Y. Huang, Y. Zhang, W. Fan, T. Liu, Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage, ACS Appl. Mater. Interfaces, 7 (2015) 27823-27830.

[97] X. Zhang, J. Xiang, C. Mu, F. Wen, S. Yuan, J. Zhao, D. Xu, C. Su, Z. Liu, SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes, Electrochim. Acta, 227 (2017) 203-209.

[98] Y. Jiang, Y. Guo, W. Lu, Z. Feng, B. Xi, S. Kai, J. Zhang, J. Feng, S. Xiong, Rationally Incorporated MoS2/SnS2 Nanoparticles on Graphene Sheets for Lithium-Ion and Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 9 (2017) 27697-27706.

[99] D. Guan, C. Yuan, Enhancing the Cycling Stability of Tin Sulfide Anodes for Lithium Ion Battery by Titanium Oxide Atomic Layer Deposition, J. Electrochem. Energy Convers. Storage, 13 (2016) 021004.

[100] H.-E. Wang, X. Zhao, X. Li, Z. Wang, C. Liu, Z. Lu, W. Zhang, G. Cao, rGO/SnS2/TiO2 heterostructured composite with dualconfinement for enhanced lithium-ion storage, J. Mater. Chem. A, 5 (2017) 25056-25063.

[101] W. Xu, Z. Xie, X. Cui, K. Zhao, L. Zhang, G. Dietrich, K.M. Dooley, Y. Wang, Hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures with enhanced lithium storage capability, ACS Appl. Mater. Interfaces, 7 (2015) 22533-22541.

[102] C.-Y. Chen, T. Yokoshima, H. Nara, T. Momma, T. Osaka, One-Step Hydrothermal Synthesis of SnS2/SnO2/C Hierarchical

Heterostructures for Li-ion Batteries Anode with Superior Rate Capabilities, Electrochim. Acta, 183 (2015) 78-84.

[103] G. Wang, J. Peng, L. Zhang, J. Zhang, B. Dai, M. Zhu, L. Xia, F. Yu, Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithium-ion batteries, J. Mater. Chem. A, 3 (2015) 3659-3666.

[104] W. Sun, X. Rui, D. Yang, Z. Sun, B. Li, W. Zhang, Y. Zong, S. Madhavi, S. Dou, Q. Yan, Two-dimensional tin disulfide nanosheets for enhanced sodium storage, ACS Nano, 9 (2015) 11371-11381.

[105] D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S.V. Savilov, J. Lin, Z.X. Shen, Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays, ACS Nano, 10 (2016) 10211-10219.
[106] P. Zhou, X. Wang, W. Guan, D. Zhang, L. Fang, Y. Jiang, SnS2 Nanowall Arrays toward High-Performance Sodium Storage, ACS Appl. Mater. Interfaces, 9 (2017) 6979-6987.

[107] H. Li, M. Zhou, W. Li, K. Wang, S. Cheng, K. Jiang, Layered SnS2 cross-linked by carbon nanotubes as a high performance anode for sodium ion batteries, RSC Adv., 6 (2016) 35197-35202.

[108] Y. Wu, P. Nie, L. Wu, H. Dou, X. Zhang, 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries, Chem. Eng. J., 334 (2018) 932-938.

[109] S. Zhang, H. Zhao, L. Yue, Z. Wang, J. Mi, Fixed-bed assisted synthesis SnO2/SnS2/CNTs composite for enhanced sodium storage performance, J. Alloys Compd., 717 (2017) 127-135.

[110] Y. Ren, J. Wang, X. Huang, J. Ding, Three-dimensional SnS2 flowers/carbon nanotubes network: Extraordinary rate capacity for sodium-ion battery, Mater. Lett., 186 (2017) 57-61.

[111] Z. Yu, X. Li, B. Yan, D. Xiong, M. Yang, D. Li, Rational design of flower-like tin sulfide@ reduced graphene oxide for high performance sodium ion batteries, Mater. Res. Bull., 96 (2017) 516-523.

[112] B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-Reduced Graphene Oxide Composite-A

High-Capacity, High-Rate, and Long-Cycle Life Sodium-Ion Battery Anode Material, Adv. Mater., 26 (2014) 3854-3859.

[113] Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-Layered SnS2 on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability, Adv. Funct. Mater., 25 (2015) 481-489.

[114] Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, Nanoscale, 7 (2015) 1325-1332.

[115] C. Ma, J. Xu, J. Alvarado, B. Qu, J. Somerville, J.Y. Lee, Y.S. Meng, Investigating the energy storage mechanism of SnS2-rGO composite anode for advanced Na-ion batteries, Chem. Mater., 27 (2015) 5633-5640.

[116] X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 Nanoplatelet@ Graphene Nanocomposites as High-Capacity Anode Materials for Sodium-Ion Batteries, Chem. Asian J., 9 (2014) 1611-1617.

[117] R. Thangavel, A. Samuthira Pandian, H.V. Ramasamy, Y.-S. Lee, Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries, ACS Appl. Mater. Interfaces, 9 (2017) 40187-40196.

[118] J. Ye, L. Qi, B. Liu, C. Xu, Facile preparation of hexagonal tin sulfide nanoplates anchored on graphene nanosheets for highly efficient sodium storage, J. Colloid Interface Sci., 513 (2018) 188-197.

[119] F. Tu, X. Xu, P. Wang, L. Si, X. Zhou, J. Bao, A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage, J. Phys. Chem. C, 121 (2017) 3261-3269.

[120] J. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A.C. Mignerey, C. Wang, Solid-state fabrication of SnS2/C nanospheres for highperformance sodium ion battery anode, ACS Appl. Mater. Interfaces, 7 (2015) 11476-11481. [121] Y. Liu, X.-Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X.W.D. Lou, Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage, Joule, 2 (2018) 725-735.

[122] Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets, Energy Environ. Sci., 9 (2016) 1430-1438.

[123] P.V. Prikhodchenko, D.Y.W. Yu, S.K. Batabyal, V. Uvarov, J. Gun, S. Sladkevich, A.A. Mikhaylov, A.G. Medvedev, O. Lev, Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes, J. Mater. Chem. A, 2 (2014) 8431-8437.

[124] Y. Liu, Y. Yang, X. Wang, Y. Dong, Y. Tang, Z. Yu, Z. Zhao, J. Qiu, Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS2 Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries, ACS Appl. Mater. Interfaces, 9 (2017) 15484-15491.

[125] W. Xu, K. Zhao, L. Zhang, Z. Xie, Z. Cai, Y. Wang, SnS2@Graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries, J. Alloys Compd., 654 (2016) 357-362.

[126] L. Fan, X. Li, X. Song, N. Hu, D. Xiong, A. Koo, X. Sun, Promising Dual-doped Graphene Aerogel/SnS2 Nanocrystal Building High Performance Sodium Ion Batteries, ACS Appl. Mater. Interfaces, 10 (2018) 2637-2648.

[127] H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries, J. Mater. Chem. A, 3 (2015) 17899-17913.

[128] J. Ning, G. Xiao, T. Jiang, L. Wang, Q. Dai, B. Zou, B. Liu, Y. Wei, G. Chen, G. Zou, Shape and size controlled synthesis and properties of colloidal IV-VI SnSe nanocrystals, CrystEngComm, 13 (2011) 4161-4166.

[129] S.Z. Kang, L.D. Jia, X.Q. Li, Y.X. Yin, L. Li, Y.G. Guo, J. Mu, Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties, Colloids Surf. A, 406 (2012) 1-5.

[130] W. Wang, P. Li, H. Zheng, Q. Liu, F. Lv, J. Wu, H. Wang, S. Guo, Ultrathin Layered SnSe Nanoplates for Low Voltage, High-Rate, and Long-Life Alkali–Ion Batteries, Small, 13 (2017) 1702228.

[131] M.-Z. Xue, J. Yao, S.-C. Cheng, Z.-W. Fu, Lithium Electrochemistry of a Novel SnSe Thin-Film Anode, J. Electrochem. Soc., 153 (2006) A270-A274.

[132] Q. Tang, H. Su, Y. Cui, A.P. Baker, Y. Liu, J. Lu, X. Song, H. Zhang, J. Wu, H. Yu, D. Qu, Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries, J. Power Sources, 379 (2018) 182-190.

[133] Z.A. Zhang, X.X. Zhao, J. Li, SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodiumion and lithium-ion batteries, Electrochim. Acta, 176 (2015) 1296-1301.

[134] D.-H. Lee, C.-M. Park, Tin Selenides with Layered Crystal Structures for Li-Ion Batteries: Interesting Phase Change Mechanisms and Outstanding Electrochemical Behaviors, ACS Appl. Mater. Interfaces, 9 (2017) 15439-15448.

[135] A. Gurung, R. Naderi, B. Vaagensmith, G. Varnekar, Z. Zhou, H. Elbohy, Q. Qiao, Tin Selenide – Multi-Walled Carbon Nanotubes Hybrid Anodes for High Performance Lithium-Ion Batteries, Electrochim. Acta, 211 (2016) 720-725.

[136] L. Zhang, L. Lu, D. Zhang, W. Hu, N. Wang, B. Xu, Y. Li, H. Zeng, Dual-buffered SnSe@CNFs as negative electrode with outstanding lithium storage performance, Electrochim. Acta, 209 (2016) 423-429.

[137] Q. Tang, Y. Cui, J. Wu, D. Qu, A.P. Baker, Y. Ma, X. Song, Y. Liu, Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high-performance anode for lithium-ion and sodium-ion batteries, Nano Energy, 41 (2017) 377-386.

[138] D.F. Wang, K.L. Zhang, Y.C. Zhu, Y. Lan, L. Hu, N. Lin, J.B. Zhou, Y.T. Qian, A novel strategy to prepare graphene oxide-wrapped nanocrystals composite for high-performance lithium storage, Mater. Lett., 175 (2016) 32-35.

[139] C.-F. Du, J.-R. Li, X.-Y. Huang, Microwave-assisted ionothermal synthesis of SnSex nanodots: a facile precursor approach towards SnSe2 nanodots/graphene nanocomposites, RSC Adv., 6 (2016) 9835-9842.

[140] Z.X. Huang, B. Liu, D. Kong, Y. Wang, H.Y. Yang, SnSe2 Quantum Dot/rGO composite as high performing lithium anode, Energy Storage Mater., 10 (2018) 92-101.

[141] J. Choi, J. Jin, I.G. Jung, J.M. Kim, H.J. Kim, S.U. Son, SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries, Chem. Commun., 47 (2011) 5241-5243.

[142] X. Wang, B. Liu, Q. Xiang, Q. Wang., X. Hou, D. Chen, G. Shen, Spray-Painted Binder-Free SnSe Electrodes for High-Performance Energy-Storage Devices, ChemSusChem, 7 (2014) 308-313.

[143] H. Yuan, Y. Jin, J. Lan, Y. Liu, Y. Yu, X. Yang, In situ synthesized SnSe nanorods in a SnOx@CNF membrane toward high-performance freestanding and binder-free lithium-ion batteries, Inorganic Chemistry Frontiers, 5 (2018) 932-938.

[144] G.D. Park, J.-H. Lee, Y.C. Kang, Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process, Nanoscale, 8 (2016) 11889-11896.

[145] S. Yuan, Y.H. Zhu, W. Li, S. Wang, D. Xu, L. Li, Y. Zhang, X.B. Zhang, Surfactant-Free Aqueous Synthesis of Pure Single-Crystalline SnSe Nanosheet Clusters as Anode for High Energy-and Power-Density Sodium-Ion Batteries, Adv. Mater., 29 (2017) 1602469.
[146] Z. Zhang, X. Zhao, J. Li, SnSex flowerlike composites as anode materials for sodium ion batteries, Mater. Lett., 162 (2016) 169-172.
[147] Y. Kim, Y. Kim, Y. Park, Y.N. Jo, Y.-J. Kim, N.-S. Choi, K.T. Lee, SnSe alloy as a promising anode material for Na-ion batteries,

Chem. Commun., 51 (2015) 50-53.

[148] X. Yang, R.Y. Zhang, N. Chen, X. Meng, P.L. Yang, C.Z. Wang, Y.Q. Zhang, Y.J. Wei, G. Chen, F. Du, Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium-Ion Storage Performance, Chem. Eur. J., 22 (2016) 1445-1451.

[149] F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D.B. Velusamy, U. Schwingenschlögl, H.N. Alshareef, SnSe2 2D Anodes for Advanced Sodium Ion Batteries, Adv. Energy Mater., 6 (2016) 1601188.

[150] A.-R. Park, C.-M. Park, Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes, ACS Nano, 11 (2017) 6074-6084.

[151] S.Y. Son, J. Hur, K.H. Kim, H.B. Son, S.G. Lee, I.T. Kim, SnTe–TiC–C composites as high-performance anodes for Li-ion batteries, J. Power Sources, 365 (2017) 372-379.

[152] D.A. Grishanov, A.A. Mikhaylov, A.G. Medvedev, J. Gun, P.V. Prikhodchenko, Z.J. Xu, A. Nagasubramanian, M. Srinivasan, O. Lev, Graphene Oxide-Supported β-Tin Telluride Composite for Sodium- and Lithium-Ion Battery Anodes, Energy Technol., 6 (2018) 127-133.