Supporting Information

g-C₃N₄/Ti₃C₂T_x(MXenes) Composite with Oxidized Surface Groups for Efficient Photocatalytic Hydrogen Evolution

Yuliang Sun^a, Di Jin^a, Yuan Sun^a, Xing Meng^{a,c,*}, Yu Gao^a, Yohan Dall'Agnese^a, Gang Chen^{a,b}, Xiao-Feng Wang^{a,*}

^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China

^bState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, PR China

^cA. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States The images of HRTEM of the composite were showed in supporting information. The HER of different ratios and annealing method between $g-C_3N_4$ and Ti_3C_2 and ΔGH (eV) of different terminated Ti_3C_2 were also demonstrated.

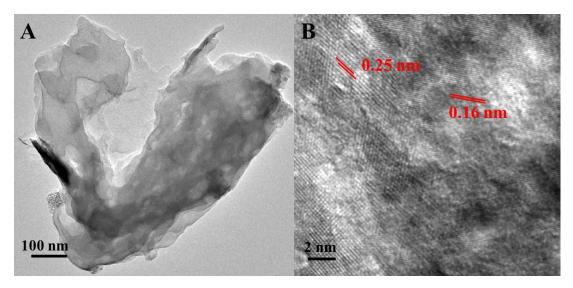
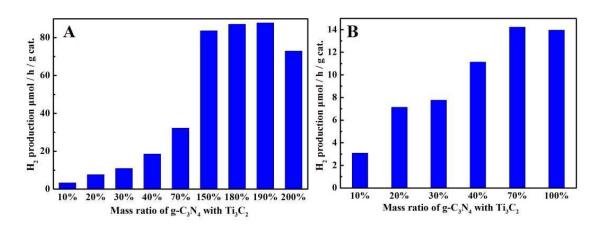



Figure S1. The HRTEM image of $g-C_3N_4$ with 30% Ti₃C₂ annealed in air for A) low

and B) high magnification.

Figure S1 showed the HRTEM image of the hybrid. The interface between g-C₃N₄

and Ti_3C_2 could be observed obviously.

Figure S2. The HER of A) $g-C_3N_4$ with Ti_3C_2 annealed in N_2 and B) $g-C_3N_4$ with

 Ti_3C_2 annealed in air at different ratios.

As shown in Figure S2, the mass ratio of $g-C_3N_4$ with Ti_3C_2 at 190% annealed in air demonstrated the best performance for hydrogen evolution while that at 70% annealed in N_2 did.

In Figure S3, g-C₃N₄ with 3% Pt as cocatalyst demonstrated the best H₂ production, which achieved 56.2 μ mol/h/g.cat and lower than that of g-C₃N₄ with 190% Ti₃C₂ annealed in air.

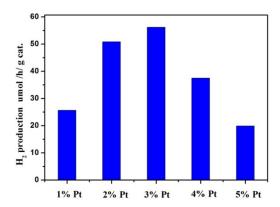


Figure S3. The HER of $g-C_3N_4$ with Pt at different ratios.

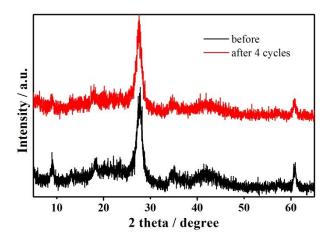


Figure S4. The XRD spectra of g-C $_3N_4$ with 30% Ti $_3C_2$ annealed in air before and

after 4 cycles.

Though the separation of $g-C_3N_4$ and Ti_3C_2 after tests, no obvious differences were shown between the XRD spectra of $g-C_3N_4$ with 30% Ti_3C_2 annealed in air before and after 4 cycles.

Table S1 displayed the ΔG_H of Ti_3C_2 with different termination groups. ΔG_H of -F terminations were much higher than that of -O, thus -O terminations showed a better photocatalysis activity of hydrogen evolution.

System	structure	Site	$\theta_{\rm H}({\rm ML})$	$\Delta G_{\rm H}({\rm eV})$
Bare	22) -	25%	-0.659
	3		50%	-0.626
O-Ti ₃ C ₂	X	с	25%	0.011
	X		50%	0.285
F-Ti ₃ C ₂	XX	c	25%	2.7 <mark>4</mark> 0
	X		50%	3.705

Table S1. Δ GH (eV) of different terminated Ti₃C₂ with different atomic H coverage