Supporting Information

Perovskite $\mathbf{L a}_{0.75} \mathrm{Sr}_{0.25} \mathrm{Cr}_{0.5} \mathbf{M n}_{0.5} \mathrm{O}_{3-\mathrm{d}}$ Sensitized SnO_{2} Fiber-in-Tube Scaffold: Highly Selective and Sensitive Formaldehyde Sensing
By Joon-Young Kang, Ji-Soo Jang, Won-Tae Koo, Jongsu Seo, Yoonseok Choi, Min-Hyeok Kim, Dong-Ha Kim, Hee-Jin Cho, WooChul Jung and Il-Doo Kim*

Contents

1. SEM image of pristine $\mathrm{SnO}_{2} \mathrm{NTs}, 2.5 \mathrm{wt} \%-$, and $30 \mathrm{wt} \% \mathrm{LSCM} @ \mathrm{SnO}_{2}$ FITs.
2. SAED pattern of LSCM@ SnO_{2} FITs.
3. XRD analysis data of LCO particles, $\mathrm{LCO} @ \mathrm{SnO}_{2}$ FITs.
4. SEM image of LCO particles, LSCM@ SnO_{2} NFs, LCO@PVP/Sn as-spun NF and LCO@ SnO_{2} FITs.
5. Formaldehyde sensing tests as a function of loading amount of LSCM particles and temperature-dependent sensing tests.
6. Resistance variation graphs and response times of $\mathrm{LSCM} @ \mathrm{SnO}_{2}$ FITs towards $1-5 \mathrm{ppm}$ of formaldehyde gases.
7. Recovery times of $\mathrm{SnO}_{2} \mathrm{NFs}, \mathrm{SnO}_{2} \mathrm{NTs}, \mathrm{LCO} @ \mathrm{SnO}_{2} \mathrm{NFs}, \mathrm{LSCM} @ \mathrm{SnO}_{2} \mathrm{NFs}$, and LSCM@ SnO_{2} FITs and resistance variation of LSCM@SnO 2_{2} FITs after injection of air in the concentration of $1-5 \mathrm{ppm}$ of formaldehyde.
8. UPS analysis of LSCM particles.
9. XPS spectra of (a) Mn 2 p of pristine LSCM particles and (b) $\mathrm{Sn} 3 d$ of $\mathrm{LSCM} @ \mathrm{SnO}_{2}$ FITs after heating at $400^{\circ} \mathrm{C}$.
10. XPS spectra of O $1 s$ of LCO and LSCM particles and spectra feature table of $\mathrm{O} 1 s$.
11. Resistance variation graph of LSCM particles during $1-5 \mathrm{ppm}$ of formaldehyde exposure.

Table 1. Resistance values of LSCM@ SnO_{2} FITs before and after injection of formaldehyde gas.

Fig. S1. SEM image of a) pristine $\mathrm{SnO}_{2} \mathrm{NTs}$, b) $2.5 \mathrm{wt} \%-$, and c) $30 \mathrm{wt} \% \mathrm{LSCM} @ \mathrm{SnO}_{2}$ FITs.

Fig. S2. SAED pattern of $\mathrm{LSCM} @ \mathrm{SnO}_{2}$ FITs.

Fig. S3. XRD analysis data of LCO particles and $\mathrm{LCO} @ \mathrm{SnO}_{2}$ FITs.

Fig. S4. SEM image of a) LCO particles, b) LSCM@ SnO_{2} NFs, c) as-spun LCO@PVP/Sn NFs and d) $\mathrm{LCO} @ \mathrm{SnO}_{2}$ FITs.

Fig. S5. a) Formaldehyde sensing tests at $400^{\circ} \mathrm{C}$ as a function of loading amount of LSCM particles and b) temperature-dependent sensing tests toward 5 ppm of formaldehyde.

Fig. S6. Resistance variation graphs and response times of $\mathrm{LSCM}_{\mathrm{Cl}}$ @ SnO_{2} FITs towards a) 5 ppm, b) 4 ppm , c) 3 ppm , d) 2 ppm , and e) 1 ppm of formaldehyde gases.

The response time is defined as the time taken for the resistance to decrease by 90% of maximum resistance difference ($\mathrm{R}_{\text {air }}-\mathrm{R}_{\text {gas }}$) after injecting reducing gases. In case of 5 ppm formaldehyde exposure, $\mathrm{R}_{\text {air }}$ and $\mathrm{R}_{\text {gas }}$ are $253.03 \mathrm{k} \Omega$ and $9.10 \mathrm{k} \Omega$, respectively. Therefore, 90% of $\mathrm{R}_{\text {air }}-\mathrm{R}_{\mathrm{gas}}$ is $219.54 \mathrm{k} \Omega$, and the response time is the time taken for the resistance to decrease $253.03 \mathrm{k} \Omega$ to $33.49 \mathrm{k} \Omega$ ($253.03-219.54 \mathrm{k} \Omega$). As indicated in Fig. S6a, the response time olf LSCM@ SnO_{2} FITs is 12 s , in case of 5 ppm formaldehyde exposure. The same calculation method is applied to $4,3,2$, and 1 ppm of formaldehyde exposure, and to the control samples (pristine $\mathrm{SnO}_{2} \mathrm{NFs}, \mathrm{SnO}_{2}$ NTs, LSCM@ SnO_{2} NFs, and LCO@ SnO_{2} FITs).

Fig. S7. a) Recovery times of $\mathrm{SnO}_{2} \mathrm{NFs}, \mathrm{SnO}_{2} \mathrm{NTs}, \mathrm{LCO} @ \mathrm{SnO}_{2} \mathrm{NFs}, \mathrm{LSCM} @ \mathrm{SnO}_{2} \mathrm{NFs}$, and LSCM@ SnO_{2} FITs in the concentration range of $1-5 \mathrm{ppm}$. b-f) Resistance variation of LSCM@ SnO_{2} FITs after injection of air and recovery times in the concentration of 1-5 ppm of formaldehyde.

Figure S8. UPS analysis of LSCM particles.

Figure S9. XPS spectra of (a) Mn 2p of pristine LSCM particles and (b) $\mathrm{Sn} 3 d$ of $\mathrm{LSCM} @ \mathrm{SnO}_{2}$ FITs after heating at $400^{\circ} \mathrm{C}$.

(c)

Element / Transition	Peak Energy (eV)	Peak Area (eV counts)
$\mathrm{O}^{2-}(1 \mathrm{~s})$ in LCO	529.9	30649.50
$\mathrm{O}^{-}(1 \mathrm{~s})$ in LCO	531.0	43333.92
$\mathrm{O}^{2-}(1 \mathrm{~s})$ in LSCM	529.9	36083.30
$\mathrm{O}^{-}(1 \mathrm{~s})$ in LSCM	531.0	57832.79

Figure S10. XPS spectra of $\mathrm{O} 1 s$ of a) LCO and b) LSCM particles and c) spectra feature table of $\mathrm{O} 1 s$.

Figure S11. Resistance variation graph of LSCM particles toward $1-5 \mathrm{ppm}$ of formaldehyde.

Table S1. Resistance values of $\mathrm{LSCM} @ \mathrm{SnO}_{2}$ FITs before and after injection of formaldehyde gas.

	Resistance (k)								
concentration (ppm)	$\mathrm{R}_{\text {air }}(0 \mathrm{~s})$	$\mathrm{R}_{\mathrm{gas}}(4 \mathrm{~s})$ njection	8 s	12 s	16 s	20 s	24 s	28 s	32 s
5	253.03	225.13	44.94	24.94	19.31	16.60	15.01	14.00	13.31
4	240.28	241.00	231.61	60.03	30.99	23.85	20.47	18.54	17.24
3	240.99	241.80	240.80	95.00	43.55	31.49	27.03	24.37	22.62
2	254.07	254.90	255.06	191.07	79.44	51.06	41.35	36.71	34.08
1	282.27	282.39	177.35	116.89	89.53	77.06	69.79	65.17	61.94

