Supporting Information

Perovskite $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ Sensitized SnO_2 Fiber-in-Tube Scaffold: Highly Selective and Sensitive Formaldehyde Sensing

By Joon-Young Kang, Ji–Soo Jang, Won-Tae Koo, Jongsu Seo, Yoonseok Choi, Min-Hyeok Kim, Dong-Ha Kim, Hee-Jin Cho, WooChul Jung and Il–Doo Kim*

Contents

- 1. SEM image of pristine SnO₂ NTs, 2.5 wt%-, and 30 wt% LSCM@SnO₂ FITs.
- 2. SAED pattern of LSCM@SnO₂ FITs.

3. XRD analysis data of LCO particles, LCO@SnO₂ FITs.

4. SEM image of LCO particles, LSCM@SnO₂ NFs, LCO@PVP/Sn as-spun NF and LCO@SnO₂ FITs.

5. Formaldehyde sensing tests as a function of loading amount of LSCM particles and temperature-dependent sensing tests.

6. Resistance variation graphs and response times of LSCM@SnO₂ FITs towards 1–5 ppm of formaldehyde gases.

7. Recovery times of SnO₂ NFs, SnO₂ NTs, LCO@SnO₂ NFs, LSCM@SnO₂ NFs, and LSCM@SnO₂ FITs and resistance variation of LSCM@SnO₂ FITs after injection of air in the concentration of 1-5 ppm of formaldehyde.

8. UPS analysis of LSCM particles.

9. XPS spectra of (a) Mn 2p of pristine LSCM particles and (b) Sn 3*d* of LSCM@SnO₂ FITs after heating at 400 °C.

10. XPS spectra of O 1s of LCO and LSCM particles and spectra feature table of O 1s.

11. Resistance variation graph of LSCM particles during 1-5 ppm of formaldehyde exposure.

Table 1. Resistance values of LSCM@SnO $_2$ FITs before and after injection of formal dehyde gas.

Fig. S1. SEM image of a) pristine SnO₂ NTs, b) 2.5 wt%-, and c) 30 wt% LSCM@SnO₂ FITs.

Fig. S2. SAED pattern of LSCM@SnO₂ FITs.

Fig. S3. XRD analysis data of LCO particles and LCO@SnO₂ FITs.

Fig. S4. SEM image of a) LCO particles, b) LSCM@SnO₂ NFs, c) as-spun LCO@PVP/Sn NFs and d) LCO@SnO₂ FITs.

Fig. S5. a) Formaldehyde sensing tests at 400 °C as a function of loading amount of LSCM particles and b) temperature-dependent sensing tests toward 5 ppm of formaldehyde.

Fig. S6. Resistance variation graphs and response times of LSCM@SnO₂ FITs towards a) 5 ppm, b) 4 ppm, c) 3 ppm, d) 2 ppm, and e) 1 ppm of formaldehyde gases.

The response time is defined as the time taken for the resistance to decrease by 90% of maximum resistance difference ($R_{air}-R_{gas}$) after injecting reducing gases. In case of 5 ppm formaldehyde exposure, R_{air} and R_{gas} are 253.03 k Ω and 9.10 k Ω , respectively. Therefore, 90% of $R_{air}-R_{gas}$ is 219.54 k Ω , and the response time is the time taken for the resistance to decrease 253.03 k Ω to 33.49 k Ω (253.03-219.54 k Ω). As indicated in Fig. S6a, the response time o1f LSCM@SnO₂ FITs is 12 s, in case of 5 ppm formaldehyde exposure. The same calculation method is applied to 4, 3, 2, and 1 ppm of formaldehyde exposure, and to the control samples (pristine SnO₂ NFs, SnO₂ NTs, LSCM@SnO₂ NFs, and LCO@SnO₂ FITs).

Fig. S7. a) Recovery times of SnO_2 NFs, SnO_2 NTs, $LCO@SnO_2$ NFs, $LSCM@SnO_2$ NFs, and $LSCM@SnO_2$ FITs in the concentration range of 1–5 ppm. b-f) Resistance variation of $LSCM@SnO_2$ FITs after injection of air and recovery times in the concentration of 1-5 ppm of formaldehyde.

Figure S8. UPS analysis of LSCM particles.

Figure S9. XPS spectra of (a) Mn 2p of pristine LSCM particles and (b) Sn 3*d* of LSCM@SnO₂ FITs after heating at 400 °C.

Figure S10. XPS spectra of O 1*s* of a) LCO and b) LSCM particles and c) spectra feature table of O 1*s*.

Figure S11. Resistance variation graph of LSCM particles toward 1-5 ppm of formaldehyde.

Gas concentration (ppm)	Resistance (kΩ)								
	R _{air} (0 s)	R_{gas} (4s)	8 s	12 s	16 s	20 s	24 s	28 s	32 s
	HCHO injection								
5	253.03	225.13	44.94	24.94	19.31	16.60	15.01	14.00	13.31
4	240.28	241.00	231.61	60.03	30.99	23.85	20.47	18.54	17.24
3	240.99	241.80	240.80	95.00	43.55	31.49	27.03	24.37	22.62
2	254.07	254.90	255.06	191.07	79.44	51.06	41.35	36.71	34.08
1	282.27	282.39	177.35	116.89	89.53	77.06	69.79	65.17	61.94

Table S1. Resistance values of LSCM@SnO₂ FITs before and after injection of formaldehyde gas.