Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Aqueous Zn-MnO₂ rechargeable microbattery

Guoqiang Sun, Xuting Jin, Hongsheng Yang, Jian Gao and Liangti Qu*

Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: <u>lqu@bit.edu.cn</u>

Fig. S1. The open circuit voltage of the microdevice.

Fig. S2. XRD patterns of the substrate before and after modified with Zn anode.

Fig. S3. XRD patterns of the substrate before and after modified with MnO₂ cathode.

Fig. S4. TEM and high-resolution TEM images of as-synthesized MnO₂.

Fig. S5. The effect of some conditions on electrochemical performance: (A) Deposition time of MnO₂. (B) Deposition time of Zn. (C) The width of gap.

Fig. S6. Cycling performance of the micro-ZMB collected in electrolyte with different concentration of MnSO₄.

Fig. S7. Charge/discharge profiles at varying current density.

Fig. S8. Nyquist plots of the microbattery before and after 200 cycles.

Fig. S9. XRD patterns of the MnO_2 electrode before and after the first cycle.

Fig. S10. SEM and magnified SEM images of the MnO₂ electrode after 200 cycles.

Fig. S11. (A) SEM image of the Zn anode after 200 cycles. (B) XRD patterns of the Zn anode before and after 200 cycles.

Fig. S12. Photograph of a calculator powered by (A) parallel device and (B) signal device.

Cathode	Current density (A g ⁻¹)	Discharge capacity (mAh g ⁻¹)	References
α -MnO ₂ nanorod	0.21	120	1
δ -MnO ₂	0.123	123	2
MnO ₂ nanoflakes	0.377	150	3
MnO ₂ nanofibers	0.308	260	4
$ZnMn_2O_4$	0.5	90	5
Amorphous MnO ₂ particles	0.5	227.3	This work

Table S1. Comparison of the capacity of the micro-ZMB with other Zn-ion batteries.

Table S2. Comparison of the electrochemical performance of the micro-ZMB with other microbatteries.

Method	Electrolytes	Cycle numbers	References
Reactive ion etching and chemical vapor deposition	LiPON	60	6
Photolithography and pyrolysis	LiClO ₄ in EC and DMC	12	7
3D printing	LiClO ₄ in EC and DMC	30	8
photolithography and atomic layer deposition	Li(TFSI) in EC and DMC	50	9
Lithography and electrodeposition	LiClO ₄ in EC and DMC	15	10
Screen-print, laser carving and electrodeposition	ZnSO ₄ and MnSO ₄ aqueous solution	100	11
Laser carving and electrodeposition	ZnSO ₄ and MnSO ₄ aqueous solution	200	This work

Note, EC: ethylene carbonate; DMC: dimethyl carbonate

References

- 1 1 B. Lee, C. S. Yoon, H. R. Lee, K. Y. Chung, B. W. Cho and S. H. Oh, *Sci. Rep.*, 2014, 4, 6066.
- 2 S. D. Han, S. Kim, D. G. Li, V. Petkov, H. D. Yoo, P. J. Phillips, H. Wang, J. J. Kim, K. L. More, B. Key, R. F. Klie, J. Cabana, V. R. Stamenkovic, T. T. Fister, N. M. Markovic, A. K. Burrell, S. Tepavcevic and J. T. Vaughey, *Chem. Mater.*, 2017, 29, 4874.
- 3 W. Sun, F. Wang, S. Hou, C. Y. Yang, X. L. Fan, Z. H. Ma, T. Gao, F. D. Han, R. Z. Hu, M. Zhu and C. S. Wang, J. Am. Chem. Soc., 2017, 139, 9775.

- 4 H. L. Pan, Y. Y. Shao, P. F. Yan, Y. W. Cheng, K. S. Han, Z. M. Nie, C. M. Wang, J. H. Yang,
 X. L. Li, P. Bhattacharya, K. T. Mueller and J. Liu, *Nat. Energy*, 2016, 1, 16039.
- 5 N. Zhang, F. Y. Cheng, Y. C. Liu, Q. Zhao, K. X. Lei, C. C. Chen, X. S. Liu and J. Chen, J. Am. Chem. Soc., 2016, 138, 12894.
- 6 P. H. L. Notten, F. Roozeboom, R. A. H. Niessen and L. Baggetto, Adv. Mater., 2007, 19, 4564.
- 7 H. S. Min, B. Y. Park, L. Taherabadi, C. L. Wang, Y. Yeh, R. Zaouk, M. J. Madou and B. Dunn, J. Power Source, 2008, 178, 795.
- 8 K. Sun, T. S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillion and J. A. Lewis, *Adv. Mater.*, 2013, 25, 4539.
- 9 E. Eustache, P. Tilmant, L. Morgenroth, P. Roussel, G. Patriarche, D. Troadec, N. Rolland, T. Brousse and C. Lethien, *Adv. Energy Mater.*, 2014, 4, 1079.
- 10 J. H. Pikul, H. G. Zhang, J. Cho, P. V. Braun and W. P. King, Nat. Commun., 2013, 4, 1732.
- 11 W. H. Lai, Y. Wang, Z. W. Lei, R. H. Wang, Z. Y. Lin, C. P. Wong, F. Y. Kang and C. Yang, J. Mater. Chem. A, 2018, 6, 3933.