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Computational methods 

The first principle calculations were conducted, using Perdew-Burke-Ernzerhof (PBE) 

exchange-correlation functional in the framework of general gradient approximation (GGA) 

implemented in the DMol3 package in Materials Studio (version 7.0) of Accelrys Inc. An all-

electron double numerical basis set with polarization functions (double numerical polarization 

(DNP) basis set) was used in this work. The convergence criteria applied for geometry 

optimizations were 1.0×10-5 au, 2.0×10-3 au Å-1, and 5.0×10-3 Å for energy change, maximum 

force and maximum displacement, respectively. The threshold for self-consistent-field (SCF) 

density convergence was set to 1.0×10-6 eV and the global cutoff was set to fine. For 

quantitatively measuring the interaction between the CMK-3 and chalcogen-containing 

species, we defined the binding energy Eb as follows: Eb = Ecarbon + Echalcogen – Etotal.  Ecarbon, 

Echalcogen, and Etotal represent the total energies of a polyaromatic molecule, an isolated 

chalcogen-containing species, and a polyaromatic molecule binding to a chalcogen-containing 

species, respectively.
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Figure S1. The HRTEM image of the as-prepared CMK-3 sample.
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Figure S2. XRD patterns of the CMK-3 and Te0.1S0.9/CMK-3 samples. No distinct differences 

were found between the Te0.1S0.9/CMK-3 and CMK-3 samples, suggesting that the TexS1-x  

confined in the CMK-3 are very small nanocrystal or in amorphous form.
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Figure S3. N2 adsorption-desorption isotherms of the CMK-3 and Te0.1S0.9/CMK-3 samples. 

In comparison with the pristine CMK-3, the specific surface area, pore size and pore volume 

of the Te0.1S0.9/CMK-3 sample exhibit the expected decrease, demonstrating the successful 

incorporation of the Te0.1S0.9 into the inner surface of the mesoporous structures. 
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Figure S4. High-resolution S 2p and Te 4s spectras of the S/CMK-3 and Te0.1S0.9/CMK-3 

samples. The S/CMK-3 sample presents characteristic S 2p3/2 and 2p1/2 peaks located at 

∼164.3 and ∼165.5 eV for the S-S homopolar bond. However, in addition to the S-S bond, a 

doublet peak at a lower binding energy of ∼163.1/∼164.3 eV, which corresponds to the Te-S 

heteropolar bond, was deconvoluted and curve-fitted in the Te0.1S0.9/CMk-3 sample. The 

presence of Te-S chemical bonding configurations in the Te0.1S0.9/CMk-3 sample further 

confirms the existence of tellurium sulfide compounds in them. 
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Figure S5. The phase diagram of sulphur-tellurium binary system. Reproduced with 

permission from Journal of Phase Equilibria. (H. Okamoto, Journal of Phase Equilibria, 1997, 

18: 108)
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Figure S6. CV curves of the S/CMK-3 sample at 0.1 mV s-1. No oxidation and reduction 

current peaks are observed after the first cathodic scanning of the S/CMK-3 sample. Such 

electrochemical incompatibility of the S/CMK-3 sample in the carbonate-based electrolytes 

should be due to the polysulfide consumption by an undesired chemical reaction with 

carbonates which occurs when the polysulfides dissolve into the electrolytes to form a single-

phase solution.
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Figure S7. Results of first principle calculations showing the most stable configurations and 

calculated binding energies of the S-S (a) and Te-S (b) species with carbons. The black, gray, 

yellow and red balls represent the C, H, S and Te atoms, respectively. The CMK-3 was 

modeled with a single-layer carbon (typically 6 carbon rings), and the adsorption of Te-S and 

S-S (to represent heteroatomic tellurium sulfide and homoatomic sulfur molecules, 

respectively) on the carbon layer was investigated. It is found that the binding energy of 

heteroatomic Te-S species with carbon is stronger than that of homoatomic S-S species, 

which could be attributed to the higher density of polarizable electrons contributed by the 

larger Te atoms than S atoms. 
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Figure S8. The charge-discharge curves of (a) the  Te0.05S0.95/CMK-3 and (b) Te0.2S0.8/CMK-

3 samples at 250 mA g-1.
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Figure S9. FTIR spectras of the fresh and cycled Te0.1S0.9/CMK-3 electrodes. In the fresh 

Te0.1S0.9/CMK-3 electrodes, the significant absorption peaks at 3426, 2919/2854, 1544 and 

1087 cm-1 are mainly originated from the -OH, -CH, -COO- and -OCO bonds of the sodium 

alginate (SA) binder, respectively. After the first discharge-charge cycle at 3.0 V, the cycled 

Te0.1S0.9/CMK-3 electrodes possess new IR absorption bands, which should be resulted from 

the formed SEI on electrode surfaces. The absorption peak centered at 2869 cm-1 of the cycled 

Te0.1S0.9/CMK-3 electrodes should be attributed to the -CH bond of the SA and ROCO2Li in 

the SEI; the peak centered at 1538 cm-1 should be corresponding to the -COO- bond of the SA 

and CO3
2- of Li2CO3 in the SEI film. The absorption bands at 1454, 1292, 1186 and 896 cm-1 

of the cycled Te0.1S0.9/CMK-3 electrodes should be attributed to the CO3
2- of Li2CO3, -CO of 

ROCO2Li, LiF and -OCO2
- of ROCO2Li in the SEI film, respectively. Therefore, it is 

suggesting that the composition of the formed SEI film on the cycled Te0.1S0.9/CMK-3 

electrode surface includes RO(CO2)2Li, Li2CO3 and LiF.
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Figure 10. Cycling performances of the S/CMK-3 and Te/CMK-3 samples at 250 mA g−1. 
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Figure S11. The theoretical capacities of the TexS1-x/CMK-3 (x=0, 0.05, 0.1, 0.2 and 1) 

samples. The theoretical capacity values are calculated based on the complete reduction of 

TexS1-x to Li2S and Li2Te.
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Figure S12. EIS of the TexS1-x/CMK-3 (x=0.05, 0.1 and 0.2) samples before the first cycle. 

The EIS results show that the Te0.1S0.9/CMK-3 and Te0.2S0.8/CMK-3 samples have lower 

charge tranfer resistances than that of the Te0.05S0.95/CMK-3 sample, which should be due to 

their improved conductivity and reaction kinetics by introducing more Te components. 
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Table S1. Comparison of our results with the previously reported works on the chalcogen-C 
composites

Composite Electrolyte
TexSeySz 
loading
/ wt.%

Current 
rate

/ mA g-1

The initial 
discharge capacity 

/ mAh g-1  (The 
initial coulombic 
efficiency / %)

Reversible 
capacity /
mAh g-1

S/NMC1 60 335 1145 (94.1) 758 (100 cycles)
S S@CNTs/

Co3S4-NBs2 70 335 1535 (98.1) 1254 (100 cycles)

Se/MCS3 50 337.5 513 (92.4) 300 (100 cycles)Se Se/NDMC4 56.2 675 535 (90.9) 277 (50 cycles)

Te  Te/MPC5 68.0 42 670 (90.6) 391 (100 cycles)
389 (200 cycles)

SeS2/MCA6 49.3 500 846 (70.5) 330 (100 cycles)
270 (200 cycles)

200 1234 (86.7) 838 (100 cycles)
SeS2/CMK-

3@PDA7 70 2000 777 (97.6)
545 (100 cycles)
505 (200 cycles)
350 (500 cycles)

SeS2/HMC@
TiN8 70 224 987 (99.1)

840 (50 cycles)
778 (100 cycles)
690 (200 cycles)CoS2@LRC/SeS2CoS2@LRC/SeS2CoS2@LRC/SeS2CoS2@LRC/SeS2CoS2@LRC/SeS2CoS2@LRC/SeS2

SeS2/CoS2@
LRC9 / 200 1015 (99.0) 745 (100 cycles)

138.9 1565 (94.1) 346 (50 cycles)Se2S5/MMC10 50 649.5 692 (/) 430 (100 cycles)
Se2S5/MCM11 50 337.5 1151 (95.1) 796 (100 cycles)

Se2S6/NMC12 60 250 1198 (96.5)
963 (50 cycles)
883 (100 cycles)
780 (200 cycles)

SexSy

SeS7/CNT13 70 50 1540 (92.4) 833 (50 cycles)

TexSy Te-3-S/rGO14

Ether-
based 

electrolyte
(DOL/DME)

66.57  5000 836 (98)
772 (100 cycles)
751 (200 cycles)
673 (500 cycles)

S/CNT@
MPC15 40 167 1670 (76) 1136 (100 cycles)

1142 (200 cycles)
SPAN16 46.3 335 1404 (54.2) 353 (10 cycles)

S/C17 50 100 813 (8.7) 30 (10 cycles)
S

S/HPC18 57 160 1154 (65.5) 740 (50 cycles)

Se/Meso-CS19 30 168.75 480 (34.9)
476 (100 cycles)
462 (200 cycles)
489 (500 cycles)

Se/CMK-320 49 67.5 920 (57.8) 600 (50 cycles)
Se@N-
MPC21 50 337.5 1022 (61.3) 568 (100 cycles)

570 (200 cycles)
Se-MC22 51 67.5 897 (56.9) 317 (100 cycles)
Se/CNF23 52.3 50 663 (57) 643 (100 cycles)

Se

Se/PTCDA
-C24

Carbonate
-based 

electrolyte
(EC/DEC)

54 100 560 (64.5) 456 (100 cycles)
433 (200 cycles)
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Se/MPCS25 60 67.5 926 (72.9) 540 (100 cycles)

Se/PCS26 60 337.5 857.8 (56.5) 463 (100 cycles)
348 (200 cycles)

Se/Micro-C27 60 675 1180 (54.4) 526 (100 cycles)Se

Se/Micro-
CS28 70.5 675 656 (76.4) 416 (1200 cycles)

Te/PCs29 50 50 324 (30.8)
249 (100 cycles)
246 (200 cycles)
229 (500 cycles)

Te/CMK-330 55.1 210 447.8 (85.7) 375 (5 cycles)
Te

Te/C31 70 100 262 (67.5) 252 (100 cycles)

SeS0.7/
CPAN32 33 600 1269 (58.2)

827 (50 cycles)
838 (100 cycles)
838 (200 cycles)
813 (400 cycles)

S0.96Se0.04@
PCNF33 49 100 1883 (72.5) 840 (100 cycles)

Se0.06S0.94/
MC34 50 200 1755 (63)

1106 (50 cycles)
1077 (100 cycles)
1090 (200 cycles)

SexSy

S0.6Se0.4@
CNFs35 57.45 100 900 (56) 450 (100 cycles)

TexSy

Te0.1S0.9/
CMK-3 

(Our results)

Carbonate
-based 

electrolyte
(EC/DEC)

70 250 1250 (79.1) 845 (100 cycles)

The comparison between our results and the previously reported works demonstrate that the 

electrochemical performance of the Te0.1S0.9/CMK-3 sample is among the best series of 

chalcogen-based cathode materials when the key performance indicators including the 

reversible capacity, the initial coulombic efficiency, the Te/Se/S loading and the used 

electrolyte are all considered. It can be seen that in the ether-based electrolytes, S-, SexSy- and 

TexSy-based composites present higher reversible capacity than Se- and Te-based composites 

due to the limited theoretical gravimetric capacity of Se and Te. However, in the conventional 

and low-cost carbonate-based electrolytes which have been widely used in the commerical 

lithium-ion batteries, most of S-based composites are electrochemically incompatible and 

rapidly deteriorated except small S2-4 molecules confined in microporous carbons with low S 

loading[15]. In our present work, we first demonstrate the heteroatomic TexS1-x molecule-based 

composite as an attractive cathode material in the carbonate-based electrolyte. Our results 

show that the heteroatomic Te0.1S0.9/CMk-3 composites can be reversibly charged and 
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discharged in the carbonate-based electrolyte with competitive cycling stability and reversible 

capability. Moreover,  the initial coulombic efficiency and the active material loading of the 

heteroatomic Te0.1S0.9/CMk-3 composites are higher than most of the previously reported 

SexSy/C composites in the carbonate-based electrolytes, which  are also very important to 

obtain high total energy density for practical applications.
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