Electronic Supporting Information

3D Carbon Foam Supported WS₂ Nanosheets for Cable-shaped Flexible

Sodium Ion Batteries

Ye Wang,^{a,b} Dezhi Kong,^b Shaozhuan Huang,^b Yumeng Shi,^{b,c} Meng Ding,^b Yew Von Lim,^b Tingting Xu,^a Fuming Chen,^c Xinjian Li,^a and Hui Ying Yang^{c,*}

^a Key Laboratory of Materials Physics of Ministry of Education, Department of Physics and

Engineering, Zhengzhou University, Zhengzhou 450052, China

^b Pillar of Engineering Product Development, Singapore University of Technology and

Design, 8 Somapah Road, 487372, Singapore

^c SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

*Corresponding author. Tel.: +65 6303 6663; Fax: +65 6779 5161. E-mail address: yanghuiying@sutd.edu.sg (H. Y. Yang)

Fig. S1. SEM image of the carbonized melamine foam.

Fig. S2. SEM images of $WS_2/3DCF$ with various solvothermal reaction times: (a) 1 hour, (b) 3 hours, (c) 6 hours and (d) 12 hours.

Fig. S3. SEM images of WS₂/3DCF with various plasma treatment durations: (a) 0 s, (b) 10 s, (c) 30 s, (d) 120 s and (e) 600 s.

Fig. S4. XRD pattern of the silicon holder background.

Fig. S5. TGA curves of 3DCF, $WS_2/3DCF$ and $NGQDs-WS_2/3DCF$ nanocomposites. Insert: weight loss during the temperature range of RT - 100 °C and 100 – 600 °C.

Fig. S6. (a) CV curve of the WS₂/3DCF electrode of the 2nd to 4th cycles at a scan rate of 0.1 mV s⁻¹ in a potential range of 0.01–3.00 V vs. Na/Na⁺. (b) Galvanostatic discharging/charging curves of the WS₂/3DCF electrode at a current density of 50 mA g⁻¹ for the 2nd and 4th cycles.

Fig. S7. (a) CV curve of the NGQDs-WS₂/3DCF electrode of the 2nd to 4th cycles at a scan rate of 0.1 mV s⁻¹ in a potential range of 0.01–3.00 V vs. Na/Na⁺. (b) Galvanostatic discharging/charging curves of the WS₂-NGQDs/3DCF electrode at a current density of 50 mA g^{-1} for the 2nd and 4th cycles.

Fig. S8. Ex-situ XRD patterns of $WS_2/3DCF$ electrodes at various discharge/charge voltages. Before ex-situ XRD measurement, $WS_2/3DCF$ electrode with membrane was disassembled in a glove box when discharged/charged to a fixed voltage, and sealed in a kapton tape.

Fig. S9. (a) CV curve of the 3DCF electrode of the 2nd to 4th cycles at a scan rate of 0.1 mV s^{-1} in a potential range of 0.01–3 V vs. Na/Na⁺. (b) Galvanostatic discharging/charging curves of the 3DCF electrode at a current density of 50 mA g^{-1} for the 1st, 2nd and 4th cycles.

Fig. S10. (a) and (b) plot of $v^{1/2}$ vs. $i(V)/v^{1/2}$ to calculate the constants of k_1 and k_2 of WS₂/3DCF and NGQDs-WS₂/3DCF electrodes, respectively.

Fig. S11. Galvanostatic charge and discharge curves of the 3^{rd} cycle of $Na_{0.44}MnO_2$ cathode at a current density of 50 mA g⁻¹.

Sample	$R_{s}\left(\Omega\right)$	$R_{f}(\Omega)$	$R_{ct}\left(\Omega\right)$
3DCF	3.429	216.6	105.1
WS ₂ /3DCF	4.873	238.1	376.8
NGQDs-WS ₂ /3DCF	4.039	227.5	237

 Table S1. Fitting results of the EIS curves in Fig. 5d using the equivalent circuit model

Table S2. Comparison of the electrochemical performance and synthesis method of the WS_2 based anode materials of SIBs.

Composites	Synthesis method	Cycling stability (mAh g ⁻ ¹ /cycles/mA g ⁻¹)	Rate capability (mAh g ⁻¹ /mA g ⁻¹)	Ref
NGQDs- WS ₂ /3DCF	Solvothermal + 500 °C annealing	392.1/1000/200	460.9/50, 436.4/100, 417.1/200, 357.4/500, 312.2/1000, 268.4/2000, 211.4/5000	This work
WS ₂ /CNT-rGO ordered 3D aerogel	Solvothermal + 500 °C annealing+freeze drying	252.9/100/200	311.4/100, 302.8/200, 289/500, 262.8/1000, 221.1/2000, 129.2/5000, 47.2/10000	1
WS ₂ nanosheets/N- doped carbon	Chemical vapor deposition	~200/100/100	349/100, 313/300, 282/500, 258/1000	2
WS2@NC	Solvothermal + 500 °C annealing	70/500/5000	384/100, 360/200, 336/500, 302/1000, 236/2000, 151/5000	3
WS ₂ /C	Electrostatic spray deposition+450 °C Ar/H ₂ + 600 °C Ar	219/300/500	393/100, 270/500, 199/1000, 81/5000	4
WS ₂ @graphene	Hydrothermal	329/500/20, 283/500/40, 218/500/80, 170/500/160, 148/500/320, 94/500/640	329/20, 283/40, 218/80, 170/160, 148/320, 94/640	5
WS ₂ -3D RGO	Spray pyrolysis + sulfidation	334/200/200	404/100, 287/900	6

References

- 1. Y. Wang, D. Kong, W. Shi, B. Liu, G. J. Sim, Q. Ge and H. Y. Yang, *Adv. Energy Mater.*, 2016, **6**, 1601057.
- 2. X. Wang, J. F. Huang, J. Y. Li, L. Y. Cao, W. Hao and Z. W. Xu, *ACS Appl. Mater. Interfaces*, 2016, **8**, 23899-23908.

- 3. Y. Von Lim, Y. Wang, L. Guo, D. Kong, R. Ang, H. Y. Yang, *J. Mater. Chem. A.* **2017**, *5*, 10406-10415.
- 4. C. Zhu, P. Kopold, W. Li, P. A. van Aken, J. Maier and Y. Yu, *J. Mater. Chem. A.*, 2015, **3**, 20487-20493.
- 5. D. Su, S. Dou and G. Wang, *Chem. Commun.*, 2014, **50**, 4192-4195.
- 6. S. H. Choi and Y. C. Kang, Nanoscale, 2015, 7, 3965-3970.