The electronic supplementary information for:

Efficient ORR Electrocatalytic Activity of Peanut Shell-Based Graphitic

Carbon Microstructures

Yanling Wu,^a Yanli Chen,^{*a} Huiqiu Wang,^a Chiming Wang,^b Ansheng Wang,^a Shuai Zhao,^a Xiyou Li,^a Daofeng Sun^{*a} and Jianzhuang Jiang^{*a,b}

^{a.} College of Science, China University of Petroleum (East China), Qingdao 266580, China. E-mail: yanlichen@upc.edu.cn

^{b.} Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China. E-mail: jianzhuang@ustb.edu.cn

Corresponding Author

*E-mail: <u>yanlichen@upc.edu.cn</u> (Y. Chen) and <u>jianzhuang@ustb.edu.cn</u> (J. Jiang).

Fig. S1 (A) CVs of the CoOP@bio-C catalyst under different quantities of Nafion in O₂-saturated 0.1 M KOH electrolyte; (B) LSV curves of CoOP@bio-C under different quantities of Nafion at 10 mV s⁻¹ and a rotating speed of 1600 rpm, respectively.

Fig. S2 SEM and the corresponding EDS image of (A) bio-C-800 and (B) CoOP@bio-C, respectively.

Fig. S3 Raman spectra of (A) the bio-C-700, bio-C-800, bio-C-900 and (B) CoOP@bio-C, $Co_3O_4@bio-C$, $Co(PO_3)_2@bio-C$, respectively.

Fig. S4 SEM image of the blank peanut shell power.

Fig. S5 N₂ adsorption/desorption isotherms of (A) the bio-C-700, bio-C-800, bio-C-900 and (B) the CoOP@bio-C, $Co_3O_4@bio-C$, $Co(PO_3)_2@bio-C$, respectively.

Fig. S6 LSV curves at various rotating rates of the (A) bio-C-700, (B) bio-C-800 and (C) bio-C-900 in O_2 -saturated 0.1 M KOH electrolyte with a sweep rate of 10 mV s⁻¹, respectively. (inset: corresponding K–L plots at various potentials)

Fig. S7 CVs of the bio-C-700, bio-C-800 and bio-C-900 catalysts in O_2 -saturated (solid lines) and N_2 -saturated (dot lines) 0.1 M KOH at 10 mV s⁻¹, respectively.

Fig. S8 High-resolution XPS spectra of the S 2p core level for CoOP@bio-C.

Fig. S9 XPS survey spectra of the (A) Co₃O₄@bio-C and (B) Co(PO₃)₂@bio-C composites.

Fig. S10 Ultraviolet photoelectron spectroscopy (UPS) measurements of CoOP@bio-C (a_1 , a_2 and a_3), Co₃O₄@bio-C (b_1 , b_2 and b_3), Co(PO₃)₂@bio-C (c_1 , c_2 and c_3) and bio-C-800 (d_1 , d_2 and d_3) (UV excitation by He I = 21.2 eV). The sample for UPS measurement was prepared by depositing a thin film (8 nm) on a small plate of SiO₂/Si substance (size: 1.5 cm × 1.5 cm). The work function of samples can be calculated by using the following equation.

 Φ (work function) = h ν – $|\,\mathsf{E}_{\mathsf{cut-off}}-\mathsf{E}_{\mathsf{f}}|$

(3)

Fig. S11 SEM image of CoOP@bio-C used in the EDS mapping revealing the elemental distribution of C, Co, P and O.

Fig. S12 Nyquist plots of CoOP@bio-C, $Co_3O_4@bio-C$, $Co(PO_3)_2@bio-C$ and bio-C-800 catalysts-modified electrodes in 0.1 M KOH solution in the frequency range of 0.1–10000 Hz, respectively. (inset: corresponding equivalent circuit)

Fig. S13 (A) Amperometric i–t curves of CoOP@bio-C and 20 wt% Pt/C and (B) upon the addition of 3 M methanol in O_2 -saturated 0.1 M KOH solution with the rotation speed of 1600 rpm.

Fig. S14 N₂ adsorption/desorption isotherms of the CoOP@bio-C-N₂.

Fig. S15 SEM images of the CoOP@bio-C-N2 sample observed at the different amplification times.

Fig. S16 CV curve of the CoOP@bio-C-N₂ catalyst in O_2 -saturated (solid line) and N_2 -saturated (dot line) 0.1 M KOH electrolyte.

Fig. S17 LSV curves at various rotating rates of the CoOP@bio-C-N₂ catalyst in O₂-saturated 0.1 M KOH electrolyte. (inset: corresponding K–L plots at various potentials)

Fig. S18 (A) CVs of CoOP@bio-C in O_2 -saturated (solid lines) and N_2 -saturated (dash lines) PBS solution at 10 mV s⁻¹. (B) LSV curves of CoOP@bio-C at various rotating speeds.

Fig. S19 (A) CVs of CoOP@bio-C in O_2 -saturated (solid lines) and N_2 -saturated (dash lines) 0.5 M H_2SO_4 media at 10 mV s⁻¹. (B) LSV curves of CoOP@bio-C at various rotating speeds.

Catalysts	Half-wave potential (V)	Current densityJ (mA cm ⁻²)	Onset potential (V)	Tafel slope (mV/dec ⁻¹)	Electron transfer number	Reference
CoOP@bio-C	0.81	5.67	0.91	57	3.93	This work
urchin-like CoP NCs	0.70	4.50	0.80			Nano Lett., 2015 [1]
Co-NC@CoP-NC	0.78		0.89			J. Mater. Chem. A, 2016 [2]
NCS-800	0.75	4.60	0.82			Energy Environ. Sci., 2014 [3]
N-CNAs	0.79	4.35	0.92			Small, 2014 [4]
Co ₃ (PO ₄) ₂ C-N	0.84	3.75	0.96			Energy Environ. Sci., 2016 [5]
Co@Co ₃ O ₄ @C	0.81	4.65	0.93			Energy Environ. Sci., 2015 [6]
WHC-700	0.88	4.40	0.98			Nanoscale, 2015 [7]
NPC-800	0.76	5.30	0.94			Phys. Chem. Chem. Phys., 2016 [8]
C09S8@CNS900	0.83	5.60	0.95			Adv. Mater., 2016 [9]
3D-HPG	0.84	5.50	0.93			Nano Energy, 2016 [10]
Cal-CoZIF-VXC72	-0.16	5.92		35	4.0	Adv. Mater., 2017 [12]
AC-U-P	-0.21	5.40	0.98		3.7	Appl. Catal.B Environ., 2017 [13]
NC@CoPx/PyCNTs-900	-0.20	5.50	0.92	85	3.8	Carbon, 2018 [14]

Table S1 Comparison of the ORR performance for CoOP@bio-C catalysts at 1600 rpm in 0.1 M KOH.

Table S2 Surface areas of the bio-C-700, bio-C-800, bio-C-900, CoOP@bio-C, CoOP@bio-C-N₂, Co₃O₄@bio-C and Co(PO₃)₂@bio-C, respectively.

Sample	BET surface area		
	$(m^2 g^{-1})$		
bio-C-700	95.6		
bio-C-800	653.9		
bio-C-900	461.7		
CoOP@bio-C	671.4		
CoOP@bio-C-N ₂	248.9		
Co ₃ O ₄ @bio-C	366.2		
Co(PO ₃) ₂ @bio-C	324.4		

Sample	Onset potential	Half wave potential	Current density J (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Electron transfer number
	(V)	(V)			
bio-C-700	0.73	0.71	3.43		2.95
bio-C-800	0.83	0.75	3.84		3.23
bio-C-900	0.81	0.69	3.86		3.02
CoOP@bio-C	0.91	0.81	5.70		3.93
CoOP@bio-C-N ₂	0.79	0.68	4.49		3.19
Co ₃ O ₄ @bio-C	0.86	0.78	5.20		3.86
Co(PO ₃) ₂ @bio-C	0.85	0.77	4.14		3.47
Pt/C	0.97	0.83	4.28		3.94 [15]

Table S3 The ORR performance of the bio-C-700, bio-C-800, bio-C-900, CoOP@bio-C, CoOP@bio-C-N₂, $Co_3O_4@bio-C$ and $Co(PO_3)_2@bio-C$ in alkaline media at 1600 rpm, respectively.

Notes and references

- 1 H. C. Yang, Y. J. Zhang, F. Hu and Q. B. Wang, *Nano Lett.*, 2015, **15**, 7616–7620.
- 2 X. Y. Li, Q. Q. Jiang, S. Dou, L. B. Deng, J. Huo and S. Y. Wang, J. Mater. Chem. A, 2016, 4, 15836–15840.
- 3 P. Chen, L. K. Wang, G. Wang, M. R. Gao, J. Ge, W. J. Yuan, Y. H. Shen, A. J. Xie and S. H. Yu, *Energy Environ. Sci.*, 2014, **7**, 4095–4103.
- 4 H. M. Zhang, Y. Wang, D. Wang, Y. B. Li, X. L. Liu, P. R. Liu, H. G. Yang, T. C. An, Z. Y. Tang and H. J. Zhao, *Small*, 2014, **10**, 3371–3378.
- 5 T. H. Zhou, Y. H. Du, S. M. Yin, X. Z. Tian, H. B. Yang, X. Wang, B. Liu, H. M. Zheng, S. Z. Qiao and R. Xu, *Energy Environ. Sci.*, 2016, **9**, 2563–2570.
- 6 W. Xia, R. Q. Zou, L. An, D. G. Xia and S. J. Guo, *Energy Environ. Sci.*, 2015, **8**, 568–576.
- 7 X. J. Liu, Y. C. Zhou, W. J. Zhou, L. G. Li, S. B. Huang and S. W. Chen, Nanoscale, 2015, 7, 6136–6142.
- 8 R. R. Liu, H. M. Zhang, S. W. Liu, X. Zhang, T. X. Wu, X. Ge, Y. P. Zang, H. J. Zhao and G. Z. Wang, *Phys. Chem. Chem. Phys.*, 2016, **18**, 4095–4101.
- 9 Q. L. Zhu, W. Xia, T. Akita, R. Q. Zou and Q. Xu, Adv. Mater., 2016, 28, 6391–6398.
- 10 Y. F. Zhao, S. F. Huang, M. R. Xia, S. Rehman, S. C. Mu, Z. K. Kou, Z. Zhang, Z. Y. Chen, F. M. Gao and Y. L. Hou, *Nano Energy*, 2016, **28**, 346–355.
- 11 T. H. Zhou, Y. H. Du, S. M. Yin, X. Z. Tian, H. B. Yang, X. Wang, B. Liu, H. M. Zheng, S. Z. Qiao and R. Xu, *Energy Environ. Sci.*, 2016, **9**, 2563–2570.
- 12 B. Ni, C. Ouyang, X. B. Xu, J. Zhuang and X. Wang, Adv. Mater., 2017, 29, 1701354.
- 13 M. Borghei, N. Laocharoen, E. Kibena-Põldsepp, L. S. Johansson, J. Campbell, E. Kauppinen, K. Tammeveski and O. J. Rojas, *Appl. Catal. B Environ.*, 2017, **204**, 394–402.
- 14 Q. Wang, Y. Fan, K. K. Wang, H. M. Shen, G. J. Li, H. Y. Fu and Y. B. She, Carbon, 2018, 130, 241–249.
- 15 Z. S. Wu, Long. Chen, J. Z. Liu, K. Parvez, H. W. Liang, J. Shu, H. Sachdev, R. Graf, X. L. Feng and K. Müllen, *Adv. Mater.*, 2014, **26**, 1450–1455.