Electronic Supplementary Information

Environmentally-Friendly Synthesis of Flexible MOFs M(NA)₂ (M = Zn, Co, Cu, Cd) with Large and Regenerable Ammonia Capacity

Yang Chen,^{a,b} Bohan Shan,^b Chengyin Yang,^a Jiangfeng Yang,^a

Jinping Li*a and Bin Mu*b

^a Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.

^b School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, United States.

*Corresponding author: Email: jpli211@hotmail.com Email: bmu@asu.edu

Fig. S1 Evolution of the precursor transformed to crystals in the synthesis of Cu(NA)₂(H₂O)₄.

Fig. S2 The compared PXRD patterns of $M(NA)_2$ (M = Zn, Co, Cu, Cd) adsorbed H₂O in liquid or steam condition.

Fig. S3 M-O and M-N bond length in structures of $M(NA)_2$ (M = Zn, Co, Cu, Cd).

Fig. S4 The SEM images of the as-synthesized $M(NA)_2(H_2O)_4$ (M = Zn, Co, Cu, Cd) samples, and their SEM images after activated or adsorbing NH₃.

Fig. S5 EDS spectrums of $M(NA)_2(H_2O)_4$ (M = Zn, Co, Cu, Cd) that as-synthesized, activated and adsorbed NH₃.

Fig. S6 IR spectra of $M(NA)_2(H_2O)_4$ (M = Zn, Co, Cu, Cd) that as-synthesized, activated and adsorbed NH₃.

Fig. S7 Compared PXRD patterns for $M(NA)_2$ (M = Zn, Co, Cu, Cd) and they were adsorbed NH_3 .

Porous materials	Surface		Ammonia	Adsorption		Regeneration			
	area/	m² g-1	uptake	conditions		conditions		Adsorption loss	Ref.
	BEI	Lang.		P/bar	1/°C	P	1/°C		1
Сонсс	848		21.9	1	25	Vacuum	150	No loss (4 cycle)	1
CuHCF	547		20.2	1	25	• •	200		1
$Co_2Cl_2(BBTA)$	1017		17.95	1	25	Vacuum	200	$\sim 4\%$ (3 cycle)	2
$Mn_2Cl_2(BTDD)$	1917		17.86	1	20	Vacuum	200	No loss (3 cycle)	3
$Zn_2(L1)_2(bipy)^a$	4/		17.79	1	20	N. Company	150		4 This sol
$Co(NA)_2$	55 705		17.5	1	25	Vacuum	150	No loss (3 cycle)	This work
BPP-7	705		16.1	1	25	0.1.	200		5
COF-10	1148		15	1	25	0.1 torr	200	4.5% (3 cycle)	6
$Zn_2(L1)_2(bpe)$			14.31	1	20	••	1.50		4
$Cu(NA)_2$	74		13.4	1	25	Vacuum	150	No loss (3 cycle)	This work
Cu(INA) ₂	164		12.5	1	25	Vacuum	150	No loss (3 cycle)	7
Ni ₂ Cl ₂ (BTDD)	1762		12.37	1	20	Vacuum	200	No loss (3 cycle)	3
$Co_2Cl_2(BTDD)$	1912		12.36	1	20	Vacuum	200	No loss (3 cycle)	3
MOF-5	2449	3917	12.2	1.066	25			Structural collapse	8
MOF-177	3275	5994	12.2	1.066	25			Structural collapse	8
PPN-6-SO ₃ H	1200		12.1	1	25				9
ZSA-1	1112	1549	11.5	1	25	Vacuum	25	No loss (5 cycle)	10
BPP-2	965		11.2	1	25				9
Zn(NA) ₂	104		10.2	1	25	Vacuum	150	No loss (3 cycle)	This work
Cr-MIL-101	3740		10	1	25	Vacuum	25	No loss (3 cycle)	11
UiO-66-NH ₂			9.84	1	25			50% (3 cycle)	3
13X zeolite	462		9.03	0.967	25.15				12
Cu ₃ (BTC) ₂	1460		8.8	BC^b	25			Structural collapse	13
Al-MIL-100	1220		8	1	25	Vacuum	25	No loss (3 cycle)	11
Mg-MOF-74	1206		7.6	BC	20				14
5A zeolite	368		7.43	0.987	25.15				12
Co-MOF-74	835		6.7	BC	20				14
IRMOF-3	1568		6.2	BC	25				15
ELM-12			6.1	1		Vacuum	60	No loss (2 cycle)	16
Zn(INA) ₂			6	1	25	Vacuum	120	No loss (3 cycle)	17
Cd(NA) ₂	41		6	1	25	Vacuum	150	No loss (3 cycle)	This work
UiO-66-OH	946		5.69	BC	20				18
Al-NH ₂ -MIL-53			5.4	1	25	Vacuum	150		11
MOF-199	1264		5.1	BC	25				15

 Table S1. The ammonia adsorption and regeneration properties under specific conditions for various porous materials.

Al-MIL-53	945	4.4	1	25	Vacuum	25	No loss (3 cycle)	11
Ni-MOF-74	937	3.76	BC	25			No loss (5 cycle)	19
Zn-MOF-74	496	3.7	BC	20				14
Fe-MIL-100	1212	2.76	BC	25			6.4% (5 cycle)	19
Cu-MOF-74	1170	2.6	BC					20
					Acid-			
12NN-AC ^c	926	2.45	BC		modifie			21
					d			
Ni-MOF-74	599	2.3	BC	20				14
IRMOF-62	1814	1.4	BC	25				15
AC	1073	0.13	BC					21

^a L1 is 6-oxo-6,7-dihydro-5H-dibenzo[d,f][1,3]-diazepine-3,9-dicarboxylate

^b BC is the abbreviation of breakthrough capacity

^c AC is the abbreviation of activated carbon; 12NN-AC is acid-modified activated carbon

- A. Takahashi, H. Tanaka, D. Parajuli, T. Nakamura, K. Minami, Y. Sugiyama, Y. Hakuta, S. Ohkoshi and T. Kawamoto, *J. Am. Chem. Soc.*, 2016, 138, 6376-6379.
- 2 A. J. Rieth and M. Dinca, J. Am. Chem. Soc., 2018, 140, 3461-3466.
- 3 A. J. Rieth, Y. Tulchinsky and M. Dinca, J. Am. Chem. Soc., 2016, 138, 9401-9404.
- 4 S. Glomb, D. Woschko, G. Makhloufi and C. Janiak, ACS Appl. Mater. Interfaces, 2017, 9, 37419-37434.
- 5 J. F. Van Humbeck, T. M. McDonald, X. Jing, B. M. Wiers, G. Zhu and J. R. Long, *J. Am. Chem. Soc.*, 2014, **136**, 2432-2440.
- 6 C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt and O. M. Yaghi, Nat. Chem., 2010, 2, 235-238.
- 7 Y. Chen, L. Li, J. Li, K. Ouyang and J. Yang, J. Hazard. Mater., 2016, 306, 340-347.
- 8 D. Saha and S. Deng, J. Colloid Interface Sci., 2010, 348, 615-620.
- 9 G. Barin, G. W. Peterson, V. Crocellà, J. Xu, K. A. Colwell, A. Nandy, J. A. Reimer, S. Bordiga and J. R. Long, *Chem. Sci.*, 2017, 8, 4399-4409.
- 10 Y. Chen, Y. Wang, C. Yang, S. Wang, J. Yang and J. Li, ACS Sustainable Chem. Eng., 2017, 5, 5082-5089.
- 11 Y. Chen, F. Zhang, Y. Wang, C. Yang, J. Yang and J. Li, *Microporous Mesoporous Mater.*, 2018, 258, 170-177.
- 12 J. Helminen, J. Helenius, E. Paatero and I. Turunen, J. Chem. Eng. Data, 2001, 46, 391-399.
- 13 G. W. Peterson, G. W. Wagner, A. Balboa, J. Mahle, T. Sewell and C. J. Karwacki, *J. Phys. Chem. C*, 2009, 113, 13906-13917.
- 14 T. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt and O. Yaghi, Chem. Eng. Sci., 2011, 66, 163-170.
- 15 D. Britt, D. Tranchemontagne and O. M. Yaghi, Proc Natl Acad Sci USA, 2008, 105, 11623-11627.
- 16 L. Li, Y. Wang, J. Yang, Y. Chen and J. Li, ChemPlusChem, 2016, 81, 222-228.
- 17 Y. Chen, C. Yang, X. Wang, J. Yang, K. Ouyang and J. Li, J. Mater. Chem. A, 2016, 4, 10345-10351.
- 18 H. Jasuja, G. W. Peterson, J. B. Decoste, M. A. Browe and K. S. Walton, *Chem. Eng. Sci.*, 2015, **124**, 118-124.
- 19 S. Hindocha and S. Poulston, Faraday Discuss, 2017, 201, 113-125.
- 20 M. J. Katz, A. J. Howarth, P. Z. Moghadam, J. B. DeCoste, R. Q. Snurr, J. T. Hupp and O. K. Farha, *Dalton Trans.*, 2016, 45, 4150-4153.
- 21 C. C. Huang, H. S. Li and C. H. Chen, J. Hazard. Mater., 2008, 159, 523-527.