Supplementary Information

Pure CO₂ electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell

Yuefeng Song,^{a, b, c, ‡} Zhiwen Zhou,^{a, b, c, ‡} Xiaomin Zhang,^{a, c} Yingjie Zhou,^{a, c} Huimin Gong,^c Houfu Lv,^{a, b, c} Qingxue Liu,^{a, b, c} Guoxiong Wang^{a, c*} and Xinhe Bao^{a, c*}

^a State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Dalian

Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

^b University of Chinese Academy of Sciences, Beijing, 100039, China.

^c Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian, 116023, China.

[‡] These authors have contributed equally to this work.

*Email: wanggx@dicp.ac.cn, xhbao@dicp.ac.cn.

Figure S1. Schematic diagram of the SOEC for CO_2 electrolysis.

Figure S2. Schematic diagram of the SOEC test station.

Table S1. High-temperature CO₂ electrolysis over Ni/YSZ cathode.

The structure of SOEC	Reactant gas to cathode	Temperature	Ref.
Ni-YSZ YSZ YSZ-LSM LSM	CO ₂ + CO	700°C - 800°C	1
Ni-YSZ YSZ YSZ-LSM	CO ₂ + CO	800°C	2
Ni-GDC YSZ GDC LSM-YSZ	CO ₂ + CO	800°C	3
Ni-YSZ YSZ LSM-YSZ	CO ₂ + CO	700°C - 1000°C	4
	$CO_2 + H_2$		
Ni-YSZ YSZ YDC LSFC	$CO_2 + H_2$	700°C	5
Ni-YSZ YSZ GDC PBC-GDC	CO ₂ + CO	700°C	6
Ni-YSZ YSZ LSM-YSZ	$CO_2 + H_2O + H_2$	850°C	7
Ni-YSZ YSZ LSM-YSZ	CO ₂ + CO	850°C	8
Ni-YSZ YSZ LSM-YSZ	$CO_2 + H_2O + H_2$	800°C	9
		850°C	
Ni-YSZ YSZ LSM-YSZ	$CO_2 + H_2O + H_2$	~875°C	10
Ni-YSZ YSZ LSM-YSZ	CO ₂ + CO	850°C	11
Ni-YSZ YSZ LSM-YSZ	$CO_2 + H_2O + H_2$	800°C	12
Ni-YSZ YSZ LSM-YSZ	CO ₂ + CO	850°C	13
Ni-YSZ YSZ LSCF-GDC	$CO_2 + H_2O + H_2$	800°C	14
Ni-YSZ YSZ LSM-YSZ			
Ni-YSZ YSZ LSCF-GDC	$CO_2 + H_2$	800°C	15
Ni-YSZ YSZ LSM-ESB	$CO_2 + H_2$	800°C	16
Ni-YSZ YSZ GDC LSCF	$CO_2 + H_2 + N_2$	1000°C	17
Ni-GDC YSZ GDC LSCF			
Ni-YSZ YSZ LSM-YSZ			
Ni-YSZ YSZ GDC LSCF LSM	CO ₂ + CO	650°C	18
		700°C	
		750°C	
Ni-YSZ YSZ LSM-YSZ	CO ₂ + CO	1000°C	19
	$CO_2 + H_2$		
Ni-YSZ YSZ LSM-YSZ	$CO_2 + H_2 + N_2$	1000°C	20
Ni-SDC YSZ LSM-YSZ			

Table S2. Theoretical OCV of Ni/YSZ-supported SOEC with 95% CO_2 + 5% N_2 at cathode and air at anode.

	700 °C	750 °C	800 °C
К1	3.001×10 ⁻³	3.987×10 ⁻³	5.160×10 ⁻³
K ₂	2.380×10 ⁻¹¹	1.312×10 ⁻¹⁰	6.163×10 ⁻¹⁰
[O ₂]	0.6290×10 ⁻¹⁶	0.1083×10 ⁻¹⁴	0.1427×10 ⁻¹³
OCV theoretical	0.749 V	0.725 V	0.701 V

 $CO_2(g) + Ni = NiO + CO(g);$ K₁

 $CO_2(g) = CO(g) + 1/2O_2(g);$ K₂

$$K_{1} = \frac{[CO]}{CO_{2}}$$

$$[O_{2}]_{Cathode} = (\overline{K_{1}})^{2}$$

$$K_2 = \frac{[CO][O_2]}{CO_2}$$

 $E_{Nernst} = \frac{RT}{4F} \ln(\frac{[O_2]Anode}{[O_2]Cathode}) \quad R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}, F = 96485 \text{ C mol}^{-1}, [O_2]_{Anode} = 0.21$

Table S3. Theoretical OCV of SOEC with 95% $\rm CO_2$ + 5% $\rm N_2$ at cathode and air at anode.

	700 °C	750 °C	800 °C
K ₂	2.380×10 ⁻¹¹	1.312×10 ⁻¹⁰	6.163×10 ⁻¹⁰
[O ₂]	0.521×10 ⁻⁸	0.163×10 ⁻⁷	0.456×10 ⁻⁷
OCV theoretical	0.320 V	0.311 V	0.302 V

 $CO_2(g) = CO(g) + 1/2O_2(g);$ K₂

$$E_{Nernst} = \frac{RT}{4F} \ln \left(\frac{[O_2]Anode}{[O_2]Cathode} \right) \quad R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}, F = 96485 \text{ C mol}^{-1}, [O_2]_{Anode} = 0.21$$

Figure S3. (A) Stability test of pure CO_2 electrolysis at the voltage of 1.5 V at 700 °C, (B) EIS of the cell at 1.5 V and 700 °C with pure CO_2 to the cathode and air to the anode and (C) The evolution of resistance.

Figure S4. EDS mappings of the Ni/YSZ cathode after the stability test.

Figure R5. Bar chart for thermodynamic equilibrium voltage of CO_2 and NiO electrolysis at different temperatures.

References

- 1 L. Kleiminger, T. Li, K. Li and G. H. Kelsall, *RSC Adv.*, 2014, 4, 50003-50016.
- 2 P. Kim-Lohsoontorn and J. Bae, J. Power Sources, 2011, **196**, 7161-7168.
- 3 P. Kim-Lohsoontorn, N. Laosiripojana and J. Bae, *Curr. Appl. Phys.*, 2011, **11**, S223-S228.
- 4 W. Li, H. Wang, Y. Shi and N. Cai, J. Hydrogen Energy, 2013, **38**, 11104-11109.
- 5 M. Lo Faro, S. Trocino, S. C. Zignani, V. Antonucci and A. S. Aricò, *J. Hydrogen Energy*, 2017, **42**, 27859-27865.
- 6 T. Liu, X. Chen, J. Wu, Z. Sheng, G. Liu and Y. Wang, J. Electrochem. Soc., 2017, **164**, F1130-F1135.
- 7 Y. Tao, S. D. Ebbesen and M. B. Mogensen, J. Electrochem. Soc., 2014, 161, F337-F343.
- 8 S. D. Ebbesen, C. Graves, A. Hauch, S. r. H. Jensen and M. Mogensen, *J. Electrochem. Soc.*, 2010, **157**, B1419.
- 9 M. Chen, Y. L. Liu, J. J. Bentzen, W. Zhang, X. Sun, A. Hauch, Y. Tao, J. R. Bowen and P. V. Hendriksen, *J. Electrochem. Soc.*, 2013, **160**, F883-F891.
- 10 Y. Tao, S. D. Ebbesen and M. B. Mogensen, J. Power Sources, 2016, **328**, 452-462.
- 11 C. Graves, S. D. Ebbesen and M. Mogensen, *Solid State Ionics*, 2011, **192**, 398-403.
- X. Sun, M. Chen, Y. L. Liu, P. Hjalmarsson, S. D. Ebbesen, S. H. Jensen, M. B. Mogensen and P. V. Hendriksen, *J. Electrochem. Soc.*, 2013, **160**, F1074-F1080.
- 13 S. D. Ebbesen and M. Mogensen, J. Power Sources, 2009, **193**, 349-358.
- Z. Zhan, W. Kobsiriphat, J. R. Wilson, M. Pillai, I. Kim and S. A. Barnett, *Energy Fuels*, 2009, 23, 3089-3096.
- 25 Z. Zhan and L. Zhao, J. Power Sources, 2010, 195, 7250-7254.
- 26 N. Ai, N. Li, S. He, Y. Cheng, M. Saunders, K. Chen, T. Zhang and S. P. Jiang, *J. Mater. Chem. A*, 2017, **5**.
- 27 V. Singh, H. Muroyama, T. Matsui, S. Hashigami, T. Inagaki and K. Eguchi, *J. Power Sources*, 2015, **293**, 642-648.
- 18 J. Yan, H. Chen, E. Dogdibegovic, J. W. Stevenson, M. Cheng and X.-D. Zhou, *J. Power Sources* 2014, **252**, 79-84.
- 19 V. Singh, H. Muroyama, T. Matsui and K. Eguchi, *Electrochemistry*, 2014, 82, 839-844.
- 20 V. Singh, H. Muroyama and T. Matsui, In ECS and Smeq Joint International Meeting, 2014.