Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes

Meiyun Xu^a, Xiaoli Han^a, Tao Wang^a, Shenhua Li^a, Daoben Hua^{a,b*}

^a State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; correspondence to: <u>dbhua_lab@suda.edu.cn;</u>

^b Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.

Table of contents

Methods	S3
Synthesis of monomer F-2	S3
Synthesis of CMP-H	S3
Sorption kinetics	S3
Sorption isotherms	S4
Thermodynamic studies	S4
Distribution ratio (<i>K</i> _d)	S5
Table S1	S6
Table S2	S7
Table S3	S7
Table S4	S8
Table S5	S8
Table S6	S8
Table S7	S9
FigureS1	S10
FigureS2	S10
FigureS3	S11
FigureS4	S11
FigureS5	S12
FigureS6	S12
FigureS7	S13
FigureS8	S13
FigureS9	S14
FigureS10	S14
FigureS11	S15
FigureS12	S15
References	S16

Methods. Transmission electron microscopy (TEM) was performed on a Tecnai G2 spirit BioTwin field emission scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was carried out by an ESCALAB 250Xi spectrometer. Fourier transform infrared (FTIR) spectra were recorded on a Varian-1000 spectrometer. Solid-state ¹³C CP/MAS NMR measurements were carried out on a Bruker Avance III model 400 MHz NMR spectrometer at a MAS rate of 5 kHz. Surface areas and pore size distributions were measured by N₂ sorption and desorption at 77.3 K using the ASAP 2020 volumetric sorption analyzer. BET surface areas were calculated over the relative pressure range 0.05-0.15 P/P₀. Samples were degassed at 100 °C for 10 h under high vacuum before analysis. Atomic force microscope (AFM) were obtained with a Bruker Multimode 8 scanning probe microscope, operating in tapping mode with phosphorus-doped Si tips (RTESPW, Bruker). CMP-EP was dispersed in ethanol *via* sonication for 1 hour prior to AFM measurement. The concentration of uranium (VI) was determined by thermo high-resolution inductively coupled plasma mass spectrometry (ICP-MS, Element II). ⁶⁰Co gamma-ray irradiation was carried out at ⁶⁰Co radiation laboratory of Soochow University and institute of radiation technology of Soochow University.

Synthesis of monomer F-2. 2, 7-dibromo-9, 9'-bis(3-bromopropyl)-fluorene (F-1) were prepared according to reported literatures.^{1, 2} F-1 (808.4 mg, 1.43 mmol) was refluxed in triethyl phosphite (10 mL) for 5 hours. After cooling down to room temperature, triethyl phosphite was removed through vacuum distillation. The residual was purified by flash column chromatography (4% ethanol in CH₂Cl₂) to give F-2 (933.2 mg) in 96% yield. 1H NMR (CDCl₃, 400 MHz), δ 7.47 (6H, m), 3.92 (8H, m), 1.47 (4H, m), 1.17 (12H, t, *J* = 7.0 Hz), 0.85 (4H, m).³

Synthesis of CMP-H. Nitrogen was bubbled to the DMF solution (50mL) of TBB (187.6 mg, 0.41 mmol) and 2, 7-dibromo-9H-fluorene (200 mg, 0.62 mmol) for 30 min. Pd(PPh₃)₄ (31 mg, 0.03 mmol) was added into the solution followed by injection of 1 M Na₂CO₃. The reaction mixture was stirred at a predetermined temperature under N₂. After cooling down, the mixture was centrifugated (4000 rpm, 30 min), and then washed with DMF for 5 times and CH_2Cl_2 for 4 times to remove unreacted monomers and impurities. The residual was dialyzed (MWCO: 8000~14000), and then freeze dried to give CMP-H (115 mg) in 87.7% yield as a white powder.

Sorption kinetics. Pseudo-first-order equation is described as following Equation (1):

$$\log(q_{\rm e} - q_{\rm t}) = \log q_{\rm e} - (\frac{k_{\rm l}}{2.303}) \times t \tag{1}$$

where q_e and $q_t (\text{mg g}^{-1})$ are the sorption capacity of U(VI) at equilibrium time and contact time t [min], respectively, and k_1 [min⁻¹] represents the pseudo first order kinetic constant. q_e and k_1 can be calculated from the slope and intercept of the plot of log (q_e - q_t) versus t, respectively (Figure S4A).

Pseudo-second-order model is expressed as the following Equation (2):

$$\frac{t}{q_{\rm t}} = \frac{1}{k_2 \times q_{\rm e}^2} + \frac{t}{q_{\rm e}}$$
(2)

where k_2 [g/mg/min] represents the rate constant of the pseudo-second order model, and can be determined from the plot of t/q_t against t (Fig. S4B).

Sorption isotherms. Langmuir model can be described as Equation (3):

$$\frac{C_e}{q_e} = \frac{1}{q_{\max}b} + \frac{C_e}{q_{\max}}$$
(3)

where *b* [L mg⁻¹] is the Langmuir constant related to the affinity of binding sites, and q_{max} [mg g⁻¹] is the maximum sorption capacity. They can be calculated from the linear plot of C_e/q_e against C_e (Fig. S5A).

The Freundlich model¹ is applied for multilayer sorption, which can be described as Equation (4):

$$\log q_{\rm e} = \log K_{\rm F} + \frac{1}{n} \log C_{\rm e} \tag{4}$$

where $K_{\rm F}$ [mg/g (L/mg)^{1/n}] and n are the Freundlich constants related to sorption capacity and sorption intensity, respectively, which can be calculated from the linear plot of log $q_{\rm e}$ versus log $C_{\rm e}$ (Fig. S5B).

Thermodynamic studies. Three basic thermodynamic parameters, free energy change (Δ G), enthalpy change (Δ H) and entropy change (Δ S), were calculated according to Equation (5) and (6).^{4, 5}

$$\ln K_a = \frac{\Delta S}{R} - \frac{\Delta H}{RT}$$
(5)

$$\Delta G = \Delta H - T \Delta S \tag{6}$$

where K_a is the thermodynamic attachment equilibrium constant, which is numerically equal to the Langmuir equilibrium constant b for neutral adsorbates or adsorbates with very weak charge ${}^6 R = 8.3145 [J (mol·K)^{-1}]$ is the universal gas constant, and T [K] is the absolute temperature. According to Equation (5), the plot of ln K_a vs. 1/T (Fig. S9) can give the value of Δ S [J (mol·K)⁻¹] and Δ H [kJ mol⁻¹], and according to Equation (6) can get Δ G (kJ mol⁻¹).

Distribution ratio (K_d). The distribution ratio (K_d) [L/g] is calculated according to Equation (7):

$$K_{\rm d} = \frac{C_0 - C_{\rm e}}{C_{\rm e}} \times \frac{V}{M} \tag{7}$$

where C_0 and C_e [mg L⁻¹] are the initial and equilibrium concentration of uranyl ions, respectively. *M* [g] is the weight of sorbent, and *V*[L] is the volume of the testing solution.

Element	Total valence ions in 6M HNO ₃ solution ^a	Conc. of metal ions in Simulated solution (ppm)
UO ₂ (NO ₃) ₂ ·6H ₂ O	UO ₂ NO ₃ ⁺	105.1
NaNO ₃	Na ⁺	165.1
$Nd(NO_3)_3$	NdNO ₃ ²⁺	88.1
Gd(NO ₃) ₃ ·6H ₂ O	GdNO ₃ ²⁺	175.4
La(NO ₃) ₃ ·6H ₂ O	LaNO ₃ ²⁺	99.0
CeCl ₃ ·7H ₂ O	CeNO ₃ ²⁺	100.0
ZrCl ₄	$ZrOH_3^+$	99.4
SrCl ₂ ·6H ₂ O	$\mathrm{SrNO_3}^+$	144.7
CsNO ₃	Cs^+	13.5
Ba(NO ₃) ₂	BaNO ₃ ⁺	105.1
Ni(NO ₃) ₂ ·6H ₂ O	Ni ₂ ⁺	108.8
CrCl ₃ ·6H ₂ O	Cr ³⁺	103.0
CoCl ₂	Co ²⁺	138.9
ZnCl ₂	Zn^{2+}	109.8
Sm(NO ₃) ₃ ·6H ₂ O	SmNO ₃ ²⁺	47.6

 Table S1. Concentrations of various elements in testing solution.

a: Metal species in nitric acid solution simulated by Medusa program. ([M] = concentration of metal ions in 6 M nitric acid)

	1 M Na ₂ CO ₃ solution content ¹	Temperature (°C)	Surface area (m ² g ⁻¹)	Pore diameter (nm) ²
CMP-H1	5%	90 °C for 1 days, 120 °C for 3 days	40.9	4.5
CMP-H2	10%	90 °C for 1 days, 120 °C for 3 days	100.6	3.2
CMP-H3	20%	90 °C for 1 days, 120 °C for 3 days	20.5	2.8
CMP-H4	10%	90 °C for 1 days, 150 °C for 3 days	25.9	1.4
CMP-H5	10%	100°C for 4 days	48.8	3.2

Table S2. BET surface areas, pore volumes, pore diameter and microanalysis of networks synthesized

 in different conditions

1: percent of DMF (V/V); 2: calculated by the nonlocal density functional theory (NLDFT) method.

Table S3. XPS Binding Energies, Fitting Parameters fwhm and content for CMP-EP.

Element	Assignment	Binding energy (eV)	FWHM*	Content (%)	
O (1s)	P=O	533.0	1.81	66.7	
	P-O	531.8	1.92	33.3	
P (2p) (1/2)	PO ₃	134.0	1.23	33.0	
P (2p) (3/2)	PO ₃	133.2	1.22	67.0	

*: FWHM: full width at half maximum

	Pseudo-first-order			Pseudo-second-order			
Temperature	$q_{\mathrm{e,exp}}$	k_1	$q_{ m e,cal}$	P 2	k_2	$q_{ m e,cal}$	P 2
	(mg/g)	(min ⁻¹)	(mg/g)	K	(g/min/mg)	(mg/g)	K
298 K	13.7	0.010	2.00	0.543	0.046	13.2	0.998
308 K	9.64	0.022	2.01	0.694	0.047	9.48	0.997
318 K	8.88	0.030	2.22	0.814	0.051	8.87	0.997

Table S4. Kinetic parameters for the sorption of U(VI) by CMP-EP. (Experimental conditions: $C_{\text{CMP-EP}}$ = 1.0 mg mL⁻¹, $C_{\text{U}(\text{VI})}$ = 4×10⁻⁵ mol L⁻¹, C_{HNO3} = 6 mol L⁻¹, and 298.15 K)

Table S5. Langmuir and Freundlich parameters for uranium (VI) sorption on CMP-EP. (Experimental

conditions: $C_{\text{CMP-EP}} = 1.0 \text{ mg mL}^{-1}$, $C_{\text{U}(\text{VI})} = 4 \times 10^{-5} \text{ mol L}^{-1}$, $C_{\text{HNO3}} = 6 \text{ mol L}^{-1}$, and 298.15 K)

	Langmiur model			Freundlich model		
Temperature	$q_{ m max,cal}$ (mg/g)	b (L/mg)	R ²	$K_{\rm F}$ (mol ¹⁻ⁿ L ⁿ /g)	n	R ²
298 K	73.1	0.099	0.996	3.42	2.05	0.927
308 K	63.2	0.089	0.993	3.22	2.12	0.913
318 K	56.2	0.066	0.994	2.88	2.04	0.917

Table S6. Thermodynamic parameters for uranium adsorption on CMP-EP.

ΔH (KJ/mol)	$\Delta S (J/mol K)$ _	ΔG (kJ/mol)			
		298 K	308 K	318 K	
-15.58	43.62	-28.56	-29.02	-29.45	

Table S7. Comparison of sorption capacity and irradiation stability on various porous sorbents in acidic condition.

Matrix	Acidity	q_{\max} (mg g ⁻¹)	k ₂ (g mg ⁻¹ min ⁻¹)	Irradiation stability	Ref.
Phosphonate-Functionalized Mesoporous Carbon	pH 4.0	< 10	0.00816	-	7
Phosphazene-based COF	pH 1.5	124	0.0019	-	8
Phosphonate-functionalized ion- imprinted mesoporous silica	1 M HNO ₃	80	0.108	500 kGy	9
Alkylphosphine oxides functionalized mesoporous silicas	2 M HNO ₃	13.4	0.003	-	10
Mesoporous silica adsorbents bearing phosphonic acid	2 M HNO ₃	<40	-	500 kGy	11
Polyetherether ketone with blended Cyanex 923	3 M HNO ₃	<60	-	-	12
Merrifield chloromethylated resin with octyl(phenyl)-N,N- diisobutylcarbamoyl- methylphosphine oxide	4 M HNO ₃	228.5	-	-	13
Phosphonic acid functionalized nanoporous polymer	4 M HNO ₃	100.6	0.00388	-	14
Conjugated microporous polymers bearing phosphonate ligands	6 M HNO ₃	73	0.046	1,000 kGy	This work

Fig. S1 Solid-state ¹³C NMR spectra of CMP-H.

Fig. S2 XPS (A) P 2p and (B) O 1s spectra of CMP-EP.

Fig. S3 Power X-ray diffraction (PXRD) pattern of CMP-H2 and CMP-EP.

Fig. S4 (A) Nitrogen sorption/desorption isotherms and (B) pore size distribution for CMP-H2 and

CMP-EP.

Fig. S5 (A) HAADF-STEM image, (B) uranium, (C) oxygen, and (D) phosphorus elemental mapping of the CMP-EP-U(VI).

Fig. S6 AFM topography and height images, and line analysis of CMP-EP flakes dispersed on mica.

Fig. S7 Sorption Kinetics of CMP-PE and CMP-H2 for U(VI) at 298 K. (Experimental conditions: $C_{\text{CMP-EP}} = 1.0 \text{ mg mL}^{-1}$, $C_{\text{U}(\text{VI})} = 4 \times 10^{-5} \text{ mol L}^{-1}$, $C_{\text{HNO3}} = 6 \text{ mol L}^{-1}$)

Fig. S8 (A) Pseudo-first order kinetics and (B) Pseudo-second order kinetics of uranium (VI) sorption on CMP-EP at 298, 308, and 318 K. (Experimental conditions: $C_{\text{CMP-EP}} = 1.0 \text{ mg mL}^{-1}$, $C_{\text{U}(\text{VI})} = 4 \times 10^{-5} \text{ mol } \text{L}^{-1}$, $C_{\text{HNO3}} = 6 \text{ mol } \text{L}^{-1}$)

Fig. S9 (A) Langmuir model and (B) Freundlich model of uranium (VI) sorption on CMP-EP at 298, 308, and 318 K. (Experimental conditions: $C_{\text{CMP-EP}} = 1.0 \text{ mg mL}^{-1}$, $C_{\text{U}(\text{VI})} = 4 \times 10^{-5} \text{ mol L}^{-1}$, $C_{\text{HNO3}} = 6 \text{ mol L}^{-1}$)

Fig. S10 (A) The maximum uranium sorption capability (q_{max}) of CMP-EP at different temperatures. (Experimental conditions: $C_{\text{CMP-EP}} = 1.0 \text{ mg mL}^{-1}$, $C_{\text{U}(\text{VI})} = 4 \times 10^{-5} \text{ mol L}^{-1}$, $C_{\text{HNO3}} = 6 \text{ mol L}^{-1}$) (B) Linear plot of ln *K*a versus 1/T.

Fig. S11 Zeta potential of CMP-EP.

Fig. S12 Distribution of U(VI) species in aqueous solution ([U] = 0.04 mmol L^{-1} and pH values ranging

from 1 to 14), which was simulated by Medusa program.

References:

- B. Liu, B. S. Gaylord, S. Wang and G. C. Bazan, *Journal of the American Chemical Society*, 2003, **125**, 6705.
- C. Chi, A. Mikhailovsky and G. C. Bazan, *Journal of the American Chemical Society*, 2007, 129, 11134.
- M. I. Mangione, R. A. Spanevello, A. Rumbero, D. Heredia, G. Marzari, L. Fernandez, L. Otero and F. Fungo, *Macromolecules*, 2013, 46, 4754.
- 4. E. Oguz, Journal of Colloid and Interface Science, 2005, 281, 62.
- A. Mellah, S. Chegrouche and M. Barkat, *Journal of Colloid and Interface Science*, 2006, 296, 434.
- 6. Y. Liu, Journal of Chemical & Engineering Data, 2009, 54, 1981.
- M. Carboni, C. W. Abney, K. M. L. Taylor-Pashow, J. L. Vivero-Escoto and W. Lin, *Industrial & Engineering Chemistry Research*, 2013, 52, 15187.
- 8. S. Zhang, X. Zhao, B. Li, C. Bai, Y. Li, L. Wang, R. Wen, M. Zhang, L. Ma and S. Li, *Journal of Hazardous Materials*, 2016, **314**, 95.
- 9. S. Yang, J. Qian, L. Kuang and D. Hua, ACS applied materials & interfaces, 2017, 9, 29337.
- 10. W. Zhang, G. Ye and J. Chen, *RSC Advances*, 2016, **6**, 1210.
- W. Zhang, G. Ye and J. Chen, *Journal of Radioanalytical and Nuclear Chemistry*, 2016, 307, 1445.
- R. B. Gujar, D. S. Lakshmi, A. Figoli and P. K. Mohapatra, *Journal of Chromatography A*, 2013, 1305, 48.
- 13. C. Siva Kesava Raju and M. S. Subramanian, Journal of Hazardous Materials, 2007, 145, 315.
- D. Yuan, Y. Wang, Y. Qian, Y. Liu, G. Feng, B. Huang and X. Zhao, *Journal of Materials Chemistry A*, 2017, 5, 22735.