Electronic Supplementary Information

Dimension-matched plasmonic Au/TiO₂/BiVO₄ nanocomposites as efficient wide-visible-light photocatalysts to convert CO₂ and mechanism insights

Ji Bian^{a,b}, Yang Qu*a, Xuliang Zhanga, Ning Suna, Dongyan Tangb, Liqiang Jinga*

^a Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University, Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, P. R.

^b School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R.

Experimental Section

Hydroxyl radical measurement. Hydroxyl radicals (•OH) are important active species in photocatalytic reaction. Using coumarin as a labelled molecule to detect the content of hydroxyl radicals is an effective method with high sensitivity. The specific method for the hydroxyl radical test was as follows: 0.05 g of the catalyst was placed in 50 mL of coumarin solution at a concentration of $2 \times 10-4$ M. The mixture was stirred for 30 min before the experiment, to ensure that it reached the adsorption-desorption equilibrium. After irradiation for 1 hour, appropriate amount of the suspension was centrifuged in a 10 mL centrifuge tube and the supernatant was transferred into a Pyrex glass cell for the fluorescence measurement of 7-hydroxycoumarin by a spectrofluorometer (Perkin-Elmer LS55). To cut off UV-light, a light filter of 420 nm was placed between the light source and the reactor.

 CO_2 Temperature-programmed desorption measurement. Temperature-programmed desorption (TPD) of carbon dioxide was carried out in a conventional apparatus by Chemisorption Analyzer equipped with a TCD detector. About 50 mg of catalysts were pretreated at 300 °C for 1 h under ultra-high-pure He gas flow with the rate of 30 mL min⁻¹. The highly pure carbon dioxide was introduced at a constant temperature of 30 °C under

the flow rate of 30 mL min⁻¹ for 60 min. The physically adsorbed CO_2 was removed by being exposed with ultra-high-pure He at 30 °C for 60 min. Then the temperature was increased to 700 °C with the heating rate of 10 °C min⁻¹ under ultra-high-pure He. Finally, the desorbed CO_2 was monitored by Chemisorption Analyzer (Tp 5080 Chemisorb).

In situ DRIFTS Measurement. The in situ DRIFTS analysis were carried out in an in situ diffuse reflectance pool with a Bruker Vector FTIR spectrometer (6700) and highsensitivity MCT detector which was cooled by liquid N₂. Firstly, a certain amount of KBr was filled into the reaction cell, then covered with 0.2 g of the catalyst on its surface. When the test was officially started, the filled catalyst was placed in the test chamber and heated to 175° C under N₂ flow (15mL min⁻¹) for 30 min to remove adsorbed impurities and then cooled to room temperature. In order to simulate the photocatalytic CO₂ reduction process, the methanol aqueous solution was firstly placed in a scrubbing cylinder, then N₂ (15mL min⁻¹) was bubbled to pass into the sample cell. In this condition, a certain amount of methanol could be adsorb on the surface of sample and then purged with N₂. Subsequently, the sample was irradiated under visible light. A 300 W Xenon arc lamp with a 420 CUT filter was used as the light source.

Electrochemical Reduction Measurement. Electrochemical reduction measurement were carried out in a traditional three-electrode system. The working electrode was a 0.3 cm diameter glassy carbon (GC) electrode, as the reference electrode, and a Pt sheet was used as the counter electrode. Five milligrams of different samples mixed with 20 μ L of 5 *wt* % Nafion ionomer was dissolved in 0.18 mL of ethanol aqueous solution. The catalyst ink was ultrasound for 30 min, and a suitable mass of the ink was uniformly dropped onto the clean GC electrochemical activity and stability of a series of catalysts. At the beginning, electrode potentials were cycled between two potential limits until perfectly overlapping, afterward the I-V curves were obtained. The electrolytes for test were 1 M Na₂SO₄. All the experiments were performed at room temperature (about 25 °C).

PEC measurement. PEC experiments were performed in a quartz cell using 500 W xenon lamp with a cut-off filter ($\lambda > 420$ nm) as the illumination source, and 0.5 M Na₂SO₄ solution as the electrolyte. The nanocomposite film was used as working electrode, a platinum plate (99.9%) was used as the counter electrode, and a saturated KCl Ag/AgCl electrode was used as the reference electrode. High purity nitrogen gas (99.999%) was bubbled through the electrolyte before and during the experiments. The applied potential was controlled using a commercial computer-controlled potentiostat (Princeton Applied Research Versa STAT 3). The photocurrent density at different excitation wavelengths was measured, for which monochromatic light was obtained by passing light from a 500 W xenon lamp through a monochromator (CM110, Spectral Products). Electrochemical impedance spectroscopy (EIS) measurements were performed using a three-electrode configuration, over the frequency range 10^{-2} to 10^{5} Hz with amplitude of 10 mV (RMS) and a bias of 0.4 V.

*Photocatalytic activities for CO*₂ *conversion.* 0.2 g of powder sample was suspended in a mixed solution containing 5 mL of water with magnetic stirring in a cylindrical steel reactor with 100 mL volume and 3.5 cm² area. A 300 W Xenon arc lamp was used as the light source. High pure CO₂ gas was passed through water and then entered into the reaction setup for reaching ambient pressure. The photocatalyst was allowed to equilibrate in the CO₂/H₂O system for 1 hour, and followed by irradiation for 4 hours. During irradiation, about 0.5 mL of gas produced was taken from the reaction cell at given time intervals for CO and O₂ concentration analysis using a gas chromatograph (GC-7920 with TCD, Au Light, Beijing), and for CH₄ concentration analysis using a gas chromatograph (GC-2014 with FID, Shimadzu Co., Japan).

Figure S1. XRD patterns (a), DRS spectra (b), SEM images (c), N_2 adsorption/desorption isotherm curves (d), Fluorescence spectra related to the formed hydroxyl radicals (e) and Photocatalytic activities for CO₂ conversion (f) of BV-NP and BV-NF.

Figure S2. XRD patterns (a) and DRS spectra (b) of BV-NF, T/BV-NF and 001T/BV-NF.

Figure S3. TEM (a) and HRTEM images (b) of 001T/BV-NF.

Figure S4. N_2 adsorption/desorption isotherm curves of T/BV-NF and 001T/BV-NF.

Figure S5. XRD patterns of 001T/BV-NF, AuNP/001T/BV-NF and AuNR/001T/BV-NF.

Figure S6. SEM image (a) and energy dispersive spectrometry (b) of AuNR/001T/BV-NF nanocomposite.

Figure S7. TEM images of AuNP/001T/BV-NF (a), AuNR/001T/BV-NF (b), BV-NF (c), 001T (d) and AuNR (e).

Figure S8. Electrochemical impedance spectra of 001T/BV-NF, AuNP/001T/BV-NF and AuNR/001T/BV-NF.

Figure S9. The Amounts of evolved CH_4 and CO under visible light irradiation for 8 hours of AuNR/001T/BV-NF nanocomposite in water.

Figure S10. The GC-Mass analysis of photocatalytic reduction products of CO_2 on AuNR/001T/BV-NF after irradiation for 6h without methanol (a) and with methanol (b).

Figure S11. In-situ DRIFTS spectra of AuNR loaded 001T/BV-NF nanocomposite after methanol adsorption for 30 min (a) and under visible light irradiation for 10 min (b).

Figure S12. m/z values for tested gas fuel after photocatalytic reduction of isotopic ${}^{13}CO_2$ by GC-7890B/MS5977A (America Aligent) under light irradiation for 6 h.

Category	Co-catalyst	Light resource	Major product	Rmax μmol/h ⁻¹ g ⁻¹	Ref.
Anatase TiO_2 by Coexposed {001} and {101} Facets	Free	300 W Xe-lamp	CH ₄	1.35	J. Am. Chem. Soc. 2014, 136, 8839- 8842
Hexahedron Prism- Anchored Octahedronal CeO ₂	Free	300 W Xe-lamp	CH ₄	1.12	J. Am. Chem. Soc. 2015, 137, 9547- 9550
Co-ZIF-9/TiO ₂	Free	300 W Xe-lamp	CH ₄ CO	0.99 8.79	J. Mater. Chem. A 2016,4, 15126- 15133
CsPbBr ₃ QD/GO	Free	100 W Xe-lamp	CH ₄ CO	2.47 4.89	J. Am. Chem. Soc. 2017, 139, 5660–5663
AuNR/001T/BV-NF	Au	300 W Xe-lamp	CH ₄ CO	7.5 2.5	Our work

Table S1. Comparison of our photocatalytic activities for CO₂ conversion with the previous works.